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A definition of strict localization of states in quantum field theory is presented. This definition is based
on considering products of field operators as the primary measurable quantities of the theory. An example
of a localized state is given, showing that such a state arises when a free field interacts with an external
current that is limited to a bounded region of space-time. It is shown by means of a graphical technique
that a state having a finite number of particles cannot satisfy the definition of localization. A simple repre-
sentation of localized states is investigated, and arguments are given to support its generality and uniqueness.

1. INTRODUCTION

HE research in quantum field theory of the past
ten years has centered chiefly about the analytic
properties of various quantities appearing in the theory.!
These properties are derived from very general charac-
teristics of the fields stated in the form of postulates
which it is believed that any complete theory must
satisfy. It is not altogether clear, however, that these
postulates, as formulated for example by Wightman,?
form a consistent system, or that they form a minimal
basis from which the analytic properties follow. It is,
therefore, of great interest at the present time to carry
out investigations having for their ultimate aim the
clarification of these postulates.

The earliest derivations of analytic properties for
relativistic field theories were based on the finite prop-
agation velocity of wave disturbances, and took into
consideration the scattering of initially separated
localized wave packets® These packets propagate
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towards one another with finite velocity and interact,
giving rise to scattered waves. The condition that no
scattered waves appear before the initial wave packets
have had time to collide is then sufficient to give analytic
properties for the scattering amplitude as a function of
the wave number %.

In later derivations of analytic properties, carried
out in the formalism of quantum field theory, the prin-
ciple of finite propagation velocity was replaced by the
condition of local commutativity of the field operators
at space-like separations,® together with certain other
postulates such as the asymptotic condition. This latter
condition is an expression of the circumstance that
particles involved in a scattering process behave as
separated and noninteracting at times in the distant
past and future before and after the scattering has
taken place. It thus replaces the wave-packet descrip-
tion of the scattering process used in earlier derivations.
The recent work of Haag® has gone far in clarifying the
status of the asymptotic condition, although it is still
not clear in precisely what form this condition is
satisfied.

It is clear that the question of localization of states
is fundamental to the above considerations. To gain an

* M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev. 91, 1612 (1954).

® R. Haag, Les Problémes Mathématique de la Théorie Quantique
des Champs (Lille, 1957); Phys. Rev. 112, 669 (1958), and the
article cited in reference 1. See also D. Kastler, Compt. rend.
acad. sci. Paris 245, 2021 (1957).
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idea of what localization means, one must have an idea
of the significance of the measuring process. Newton and
Wigner took up the question of localization from the
point of view of position measurements of a particle.®
They set up postulates from which the position eigen-
states of a particle could be determined. Their postu-
lates were based on the quantum theoretical description
of a measuring process and upon relativistic invariance
of the wave function describing the particle. In order
that the position measurement have meaning, eigen-
states corresponding to different spatial positions at a
fixed time must be orthogonal. This condition is suffi-
cient to determine the position eigenstates completely.
However, the definition of localization implied by these
position eigenstates is found not to be preserved in time,
i.e., a particle localized at a point at one time will be
spread over all space, even outside the light cone of the
initial point, at later times. Furthermore, a particle
localized in one Lorentz frame is not necessarily localized
in another. These rather unsatisfactory features of the
results of Newton and Wigner make it difficult to see
how a suitable concept of localization of particles may
be defined in relativistic field theory.

Haag?® has discussed the asymptotic condition in field
theory by means of a definition of localization in which
two states are localized if they become orthogonal as
the space-like separation of their respective regions of
localization becomes infinite. This definition is less
restrictive than the one adopted in this paper, which is
based on strict localization of a state determined by
measurement.

A basic treatment of measurements in field theory
was given by Bohr and Rosenfeld,” who showed that
averages of the field variables over space-time regions
may be taken as the basic measurable quantities of the
theory. This view seems appropriate also to the recent
postulational developments of field theory, where
vacuum expectation values of certain combinations of
field variables are treated as fundamental.

The definition of localization given in Sec. 2 is based
upon taking products of field operators, instead of par-
ticle observables, as the basic measurable quantities.
The remainder of the paper is devoted to an analysis of
the definition and a discussion of some of the properties
of the states satisfying the definition.

2. DEFINITION OF LOCALIZATION

In this section, we present and discuss the definition
of localization that forms the basis of this paper. We
take the point of view that the basic measurable quan-
tities of the theory are products of field variables 4 (x).
By this we mean that any observable quantity Q shall
be expressible in the following form as sums of integrals

(1; ig) G. Newton and E. P. Wigner, Revs. Modern Phys. 21, 400
7N, Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 12, No. 8 (1933), and Phys. Rev. 78, 794 (1950).
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of such products:

Q-—"- q0+fdx1q1(x1)A (x1)+ffdx1dx2q2(x1,x2)

XA (A (x)+---, (1)

g; being c-number functions of their space-time argu-
ments.® The expectation value of Q in any state |¢)
can then be written in terms of the quantities

|11 A %)

=1

in a form similar to (1). We wish to formulate the con-
dition that |¥) represent a state of the field which is
strictly localized in a region U of space-time. If the
phenomena described by and the field quantity A4 (x)
are confined to U, it should not be possible to detect the
presence of any field disturbance by making measure-
ments at points outside of U. In other words, such
measurements should lead to the same results whether
the state of the system is |¥) or the vacuum state |0).
Taking into consideration the nature of the measurable
quantities (1), we arrive at the following definition:

Definition of localization. A state |¥) of a field 4 (x) is
localized in the region U if

<W!f=IlA<xi>l\P>=<011:{A(xl)m), n=1,2, -, (2)

for any product of field operators taken at points ®;
all of which lie outside of U.

If there is more than one independent field in the
theory, the definition may be extended to include all
possible products of any combination of the fields. The
definition is meant to apply to fields satisfying the
Bose-Einstein statistics. For Fermi-Dirac fields, the
measurable quantities are bilinear expressibns® in the
field operators, such as charge and current densities,
and the definition must be modified accordingly. We
have limited our investigation to the case of a single
field satisfying Bose-Einstein statistics. This case
contains the essential elements of the problem, and an
extension to other cases should not present any dif-
ficulties. :

For the most part, the analysis that follows is carried
out for the case of free fields. The definition, however,
is not so restricted, and it is pointed out explicitly
wherever our arguments clearly have more general
validity. We do not consider the limitations to free
fields to be a very serious one, since we are interested
in localized states primarily as initial and final states in
scattering processes. We expect that in such cases the
particles involved in the process are far separated and
are therefore describable by free fields.

8 Four-dimensional integrals will be denoted by the symbol dx,

three-dimensional integrals by d3x.
® N. Bohr and L. Rosenfeld, Phys. Rev. 78, 794 (1950).
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It is possible to make a statement about the nature
of the region W in which a state may be localized without
entering into the details of the structure of the state
itself. We note that the quantity

wl,---,xn>=<\rf|1="11A(x;>1w>—<011:IlA<x¢->|o>

is a solution of the free field equation in each of its
arguments independently. It follows from this that if
f(x) is an arbitrary solution of the Klein-Gordon
equation vanishing sufficiently rapidly for large spatial
separations at a given time, then the expression

. a af(xy)
j;o:t d xl(f(xx)gm‘l’(xl,‘ )~ .

is independent of ¢ for fixed s, * -+, x,. This makes it
clear that if ¥(x,,- - - ,x,) is not identically zero, it must
be nonvanishing in some region of space at any given
time. Since (2) requires ¥(x1,- - -,%,) to vanish outside
U, this means that U cannot be bounded in the time-like
direction.

The actual form of the region of localization may be
also inferred from similar considerations. The solution
¥(x)=(¥|A®)|¥)— (0| A(x)|0) of the Klein-Gordon
equation may be expressed in terms of its initial values
on a surface xo=1¢ as follows:

v (x) dA(x—x')
\Il(x)=—-f d%(A(x—x’) ‘l’(x'))
zo=t dxo dxy’

by means of the singular function A(x—x").° If at a
time ¢, ¥(x) and ¥ (x)/dxp are confined to a region &
of space, then ¥(x) for arbitrary times will be confined
to the region V,.(®) consisting of ® together with the
interiors of all the forward and backward light cones
with vertices in ®. This is clear from the property that
the A function vanishes for space-like argument. Note
that ® may be taken as any bounded space-time region
instead of a space-like surface without changing the
manifold of possible regions of localization.

V(o x))

X10

3. FIELD INTERACTING WITH CLASSICAL
CURRENT DISTRIBUTION

To provide an example of a localized state, we con-
sider the interaction of a field ¢(x) with a classical
current distribution j(x). The equation of motion for
o(x) ist

(O —m?) (x)= — j(x).

We may express ¢(x) as follows in terms of free fields

$in(x) and gou(x)

1 See, for example, G. Killén’s article in Handbuch der Physik
(Springer-Verlag, Berlin, Germany, 1958), Vol. V, Part 1.

1t See, for example, K4llén’s article on quantum electrodynamics
(reference 10).
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3(x) = din(2)+ f An(r—a') ()’
= out (x) + f Ay (x— x’) j(x’)dx’,

bout=din(*)— fA(x—— ") j(@")dx'.

We may now introduce two complete sets of states,
obtained from the in and out fields, respectively. Each
of these sets may be labeled by the eigenvalues of the
number operators and the momentum operators.
Because of the action of the current j(x), the particle
configuration will change with time so that at large
times there will be a different configuration, represented
as some linear combination of the outgoing states. For
example,!! if the state of the system is [Oin), i.e., no
particles initially, then an emission of quanta will take
place such that the probability of finding # outgoing
quanta is the state of momentum k is given by the
Poisson law

wa(k)= (n)~ ((n(k)))" exp(— (n(k))),

where (n(k)), the average number of particles of
momentum k, is proportional to the quantity | j(k,w) (2,
where w= -+ (k®+m?)}, and j(k,w) is the Fourier trans-
form of j(x). Note that the outgoing configuration
depends only on those components of the Fourier
transform which satisfy k2—«?= —m?, and not on com-
ponents off the mass shell. We shall refer to this fact
in Sec. 5.
We now make the following identification:

4 (x)=¢out(x);
'0>= [OOM},
l\I,>= loin>.

We will now show that, if j(x)=0 outside of the space-
time region &, then |¥) is a localized state of the field
A(x) in Vo (®) by definition (2). We evaluate the
quantity

@[T A(x)|9)

i=1

=<°"“'-IZE Gons ()| O

=<osniﬁ(¢m<x,~)— [ dm’A(xi—x,-')j(x,-')) 101

=1

= (01| IT $1(x:) | Oue)

i=l

~3 |} dxiAlx;—xi)j(xi)

7=1

XOn| I $m@)[Ou+-. (3)

iF#=l
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The first term is the vacuum expectation value of a
product of free fields, and is thus equal to

<Oouc,1iIl ¢0ut(xi) lOO“t>=<0,IZ[1 A (ll) ’ O>

The remaining terms on the right each contain as a
factor a quantity S'dx;/A(x;—=;)j(x;) for some z;.
This quantity vanishes unless #,& V,.(3). Therefore, all
of the terms on the right vanish except the first term
when all x; lie outside V,(®). For this case, we obtain

<WII:IIA<x1-)l\v>=<0tI:IlA<xi)|0>,

which is just (2).

The states (3) are thus localized states if the generat-
ing current operates in a confined region of space-time.
They may be thought of as representatives of the type
of state which occurs in a physical scattering process.
The field of the apparatus which produces and acceler-
ates the particles to be scattered is the external field
7(x). The particles then propagate from the region of
production according to the free equations of motion.
The apparatus for detecting scattered particles may
also be thought of as an arrangement of fields and
currents located in a bounded region of space-time.
In the theoretical treatment of the scattering of fields,
the initial and final states are usually idealized to one-
particle states of definite momentum. Such states are
not localized, and cannot be produced by apparatus
confined to a bounded region of space-time. The local-
ization associated with production and detection is
accounted for in single-particle scattering theory by
using a wave-packet description of initial and final
states. It is in this sense that the localized states defined
here provide a certain field theoretic analog of the
wave-packet description.

4. LOCALIZED STATES IN TERMS OF NUMBER
AND MOMENTUM EIGENFUNCTIONS

Having found that localized states may be generated
by an external source interacting with the field within
a bounded domain of space-time, we pass on to a further
analysis of the structure of states satisfying the criterion
of localization (2). For this purpose, we consider an
expansion of the states in terms of the complete set
associated with the momentum and number operators.
Such an expansion has the form

=% 5 V-l k) ok, (4)

n=0 K1. - -%n

in which |-k, denotes a state containing #
particles of momenta ki, - -+, ks, and V denotes a finite
volume of enclosure. This expansion is always possible
for states of a free field. The four-vectors k; must satisfy
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the conditions

ki=k2—ki?=—m? k>0, (3)

the first in virtue of the field equations, and the second
because of the physical requirement that the particles
have positive energy. In addition, the coefficient
Ynlky,- - -,k.) must be symmetric in all its arguments
in order to satisfy the Pauli principle. The states
| k1, « +,kn) appearing in the expansion (4) may be
obtained by applying the creation operators af(k) to
the vacuum. They satisfy the normalization condition

<k17' T ’kﬁl kl’, Tt ;kml>
=6nm Z 6(k1—kill) t 'a(k"— k'.ﬂ)’ (6)

P(1)

the sum being taken over all permutations of the
indices labelling the £’.

We retain the normalization (6) even in the case
where two or more of the % are equal in order not to be
forced to take these states into account separately in
the calculations. This differs from the usual normali-
zation by a factor [TI(n;!) T if #y, ns, etc., k’s are equal.
In order to avoid singularities from these states because
of products of 8 functions with equal arguments appear-
ing in (6), we have enclosed the system in a finite spatial
volume V. Then the allowable values of % form a
discrete manifold over which the summation in (4) is
taken. The & functions on the right of (6) are then to be
interpreted as Kronecker symbols instead of Dirac
& functions. It may be shown that the quantities ¢, are
independent of ¥V when we are dealing with localized
states. In the final expressions for expectation values
of products of fields, the volume may be taken infinite
without these singularities reappearing, and we may
then replace the summations by integrations:

§= f (Pn/dBk)Eh=[V/(2x)*] f &3k

We have already introduced the creation operators
at(k), in terms of which the field operator may be given
as follows:

1
A(x)=
® Zk: (QwV )

kx=k-x—wx), w=(k+m?)i

[a (k)e ikz+a'f‘ (k)e—ikz:]

The normalization is chosen so that
[a(k),a’(B)]=8(k—K').

The quantities ¥(w1,- - *,%.) = (V14 (%1)- - -4 (@) | ¥)
—{0] A (%1)- - -4 (x,)]0) must vanish outside of a region
Vo(®) if (2) is to be satisfied. We wish to express this
condition in terms of the y,(ky,- - +,k,). This is greatly
facilitated by the introduction of a graphical method of
representating the matrix elements involved. From (4)
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16. 1. —_——
=t
1230
we obtain
=3 Z V‘”’%(kl,- « < ka)at (Ra) - - - a' (k2)[0)
n=0ki1,+..,
- Z V“"’z'ﬁ (k1 ) 21+ 0 V)
n=0 k1,00,
Xf fd3xl d3x ezhx1+ vt tknan
XA (1) - - A (x,)]0).

A (x) is the creation part of the field operator 4 (x):

A ()= Z

= )*a* (B)e—i*=,

We also list the following for future reference:

AP (2)=AC(z), A(@)=AD (2)+47(x),
[47) (), (3") ]=iAD (x—2),
[A9 (), 4D (") ]=[4 (x),4 7 (&) ]=0.

kx),

On introducing the Fourier transform of ¥, (%, - -,

Yl g) =V T (2w wn)t

X‘l’n(kli e ’k

n)eiklzl+- . .+ik,,z,‘, (7)

we have

I\I,>=§:iof . .fd3x1- . -dax,,\l/n(xh' . ,xn)

XA (xy) - A (2)[0). (8)

The expectation value of 4 (x,)- - -4 (x,) becomes

(¥[A @) - Axa) | ¥)

f f &2y - Pz Py, - APy
p.g=0

Xs* (21, 2o)¥a (31, - - 0] AP (35) -+
XA +) (zl)A (xl) | (xn)A(—) (yl) o
XA (39)[0). (9)

The matrix element (0] 4™ (z,)- - - AP (z1)A (x1)- - -
XA@)A (y1) <A (y,)|0) may be represented
graphically as follows (Fig. 1). First, # points are drawn
in a horizontal line, representing the » field operators
A (). Then, lines representing particles are drawn,
either connecting these points together in pairs, or
extending to the left or right. Lines may also extend
from left to right without touching one of the # points.
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o0 O
Fic. 2. T_—
Qo—°

09 4

Exactly ¢ lines must extend to the right and p lines to
the left. The resulting figure describes the sequences of
operations involved in computing the matrix element.
The graphs, as well as the matrix elements are read
from right to left. First the ¢ creation operators
A (y,) act on the vacuum to give a g¢-particle state.
Then the field operators act in turn, either destroying
a particle already present, or creating another particle.
This results in a state of p particles, which are anni-
hilated by the 4™ (z;), giving the vacuum. Note that
exactly one line emerges from each point of the graph.
It may extend to the right or left representing de-
struction or creation, respectively, of the particle. If
the figure cannot be drawn for the given values of #, p,
and ¢, then the matrix element vanishes. It is usually
possible to draw more than one graph for the given
values of p, ¢, and #n. For example, in the case n—3,
p—1, ¢—2, 12 different diagrams are possible. Six of
these are shown in Fig. 2. The other six are obtained
by crossing the two lines extending to the right.?
The quantity

<0|A(+)(Zp)' . -A“')(z;)A(xl)- .
XA@)AO (y1)- - A (3)[0)  (10)

is represented by the sum of all these possible graphs.
For a given graph, the line connecting a point P, to a
point P, to the right of P; contributes a factor
1A (Py— P,). We will not bother here to give a proof
of all these statements, but only exhibit a set of for-
mulas upon which an inductive proof may be based.
These are simple consequences of (7).

<OIA(+)(ZP)' . 'A(+)(21)A(x1)‘ . .A(xﬂ)A(—-)(yl). ..

X4 (59)|0)
=3 I8 (5= 20| A ay)

ra=1

XA (xr_1)A (@py1) -

AW (z)A () - -
A (3)]0)

CAD (2) A (1) -+

- AE)AO ()

3 A (51—, )(0] A (2,)-

=1

XA (x,,)A ) (yl) e n 46 (yH)A ) (yr+1) e

XA (35)]0).
O[A(®): - A@a)A(y)- - 4(39)]0)

=3 A (5= y1)(O] A (3) - A (@r 1) A (Brgr)

- XA () A (39) - - - A (59)] ).

12 These graphs are similar to Feynman graphs with only one
line terminating at each vertex.
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F1e. 3.
Leo o

As an example of the graphical technique, we may
consider the vacuum expectation value of a product
of fields. This is the case p=¢=0, so that no 4" or
A®) operators appear in (10), and no lines extend to
the right or left in the graphs. It is clear that the vacuum
expectation value of an odd number of operators
vanishes. We obtain

0] A (x1)- - - A (%) |0)
0 n odd

’

ZirPAE) (i —xin) - - - AP (win_1—x4,), 7 €ven,

where the sum is taken over all possible ways to form
n/2 pairs from the » points, preserving the original
order of the x; within each pair. In the case of 4-fields,
the graphs are shown in Fig. 3.

When we are evaluating the quantity (7), many of
the graphs will give the same contribution because of
the symmetry of (¥, - -,x.). For example, in Fig. 2
only the graphs shown give an independent contribution.
The six graphs obtained from them by permuting the
terminal points of the lines at the right each give the
same contribution to (9) as the corresponding unper-
muted graphs. Another example is the normalization
integral of the state (8): (¥|¥)=1. The independent
graphs are shown in Fig. 4. The contribution of each
graph must be multiplied by p!, the number of possible
graphs with crossed lines corresponding to the given
graph. Figure 4 (a) is associated with the vacuum com-
ponent of |¥). The resulting condition is

> e 'fdzl' - -dzpdyre - dypp W (31,0 - 20)
=0

X‘/’@()’h' o JyP)ipA(Jr) (zl_yl) o 'AH—) (Zp_yp)= 17

a further condition on the ¥,.

We may now prove the following theorem:

No state of the form (4) or (8) can be localized if
¥»=0 for all >N, an arbitrary integer.

This means that a localized state must have an
“infinite number of particles,” i.e., there must be a
nonzero probability of finding more than NV particles in
the state, however large N may be. The proof of this
theorem depends upon the structure of expectation
values of products of field operators, and on certain
analyticity properties of these quantities considered as

()

- Fic. 4.
o) - _ p=l
(@) p=0
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functions of the variables x;.-These analyticity proper-
ties follow from the spectral conditions (5).

Before giving the general proof, we prove the simpler
theorem that a state of the form

[0)=y0|0)+3x Vi (R) | ),

with ¢; not identically zero, cannot be localized. Thisis a
special case of the general theorem with N =1. Consider
the quantity (¥|A4 (x1)4 (x2)|¥). There are four dia-
grams contributing to this quantity, as shown in Fig. 5.
The sum of (a) and (b) is tA™ (x;—x,) times the
normalization integral of the state |¥), which is equal
to unity. Thus the quantity ¥(xi,%s) which must be
localized is the sum of (c) and (d):

W (x1,%9) = ifd“zyh* (8) AP (3—x1)
i f ByAD (22— y)Y1(y)

i f Popr* (AP (3—15)

¥ f PYAD (21— y) ()

X =B (1) ®* (22) B (22)D* (1), (11)
with
&(x)= ifd?'znlq* (2)AD) (z—x)
=—p-1 % Y1(Kk) (20) e ik=
- f drb(k)ev=,
(k)= — (2w)}(2m) 0 (RS (R*+m2)Yr* (k).  (12)

We have expressed ®(x), a solution of the Klein-
Gordon equation, as a four-dimensional Fourier trans-
form. The factors &§(k*+m?) and 6(k) are explicit
expressions of the spectral conditions (5). If we replace
x by the complex four-vector z=x-14y, expression (12)
defines a function of the four complex components of z
which is analytic for those values of z for which the
integral converges. It is easily seen that this is the case
in the region y&V, and that ®(3) is analytic in that
region.

As we allow vy to approach zero from the forward light
cone, we obtain as a boundary value the function (12).
If we now hold the space part of z fixed and real, we
obtain a function ®(x,2,) which is analytic in the upper
half of the 2z, plane, and takes on the value ®(x) on the

d) —9%
(c) el Qe
(b) oo
(@) ———g—

F16. 5.
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real axis. Then, by the uniqueness theorem for analytic
functions, we conclude that if ® vanishes in any time
interval at the point #, then it vanishes for all time at
that point.

By repeated application of this argument, we may
prove that ®(x) cannot vanish for all x outside V(&)
unless it is identically zero, that is, unless y;(k) is
identically zero. Let % be a point outside the light cone
for which ®(x)#0. Then by (11),

(¥ | A (x0)4 (x0) | ¥)— (0] 4 (x0)4 (w0) | 0)=2{ & (o) [*>0,

violating the condition of localization (2), and com-
pleting the proof that no state of the form

[ %) =] 0)+ V= Ze 1 (k) | K)

can be localized.
We now go on to the proof that no state of the form

N
I\I/>=Z V—_nm‘/’ﬂ(kl)' v :k

n=0

n) l kl,' ) ')kn>

can be localized. Consider the expectation value of the
product of 2V field operators:

0] A(x1)- - - A(x2n)]0). (13)

The diagrams contributing to this quantity may be
classified as follows:

(A) diagrams in which no two points «; are joined by
a line,

(B,) diagrams in which exactly 2p points x; are joined
by a line, p< N, and

(C) diagrams in which each x; is joined to another
#; by a line.®

For example, some of the graphs for the case N—2
are shown in Fig. 6. Figures 6 (a), (b), and (c), are of
type (C); (d) (e), (f), and (g) of type (B1); and (h)
and (j) of type (A). The sum of the contributions
of all diagrams of type (C) to the quantity (13)
is (0lA(x):--A(x,)|0) time (¥|¥), or simply
(0] A(x1)- - - A(%4)|0) since |¥) is a normalized state.
Therefore, the sum of all contributions from diagrams
of types (A) and (B,) must vanish when all the «x; lie
outside V_.(®). It is clear that a diagram of type (B,)
gives 1A (x;—x;) times the sum of all contributions of
type (A) to the quantity

<‘I’ lA (1) A (x4 (xi+1) T
XA (x,'_l)A (x]-+1) -4 (sz) l\I’>
(0) 00 00
(b) —
Fic. 6. €) = 0 ==
() T o= () e

13 We might also call this class By.
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These contributions may be written

(WA () - A @) A (@ir)- -+
XA (xj-1)A (x541) - - - A (wan) | ¥)
~{0] A (xy)- -+ A (1) A (xiy1)- - -
XA (xj-1)A(xj31) - -4 (22n) [0
—\IIB(xI)' ' X230 P XS PR

*y X1, X1, ,sz) y

i.e., the quantity itself minus contributions of types (C)
and (B). The term

\I[B(xl’ .

may be in turn expressed as a sum of products of A®
functions with vacuum expectation values of products
of a smaller number of fields. It is therefore clear that
the (B)-type diagrams will contribute a quantity of the
form

> A (x;—x)[(V] A () - -

XA (i) A (xj41)- - - A(xew) [ ¥)
—(0]A(x1) - A@im)) A (Xiy) - - -
XA(xj-1)A (%41) - - A (%20) [0)]
+ deiA(ﬂ (wi—x;) 1A (x,—
= x[(q;] |0>]+...’

involving expectation values of products of less than 2N
field operators. Now these quantities must all vanish
when the «; lie outside V. (®) if |¥) is to be localized.
For such x; then, the only diagrams which need to be
considered are those of type (A). Two diagrams of this
type are shown in Fig. 7. The contribution of these
diagrams is

Sy Xi-1,Xi4 1,0 " X1, X417 ',sz)

cA@i)A(Xigr)- -+

x7)

|&)—0] - -

P (2, - 2n)P* (v, - - 2ow)

+¢*(x1)' : "xN)q)(xN+1$' c ax2N)'

@(xl’. . .’xN) =1:Nf . -fd3zl. . .dazNA(+) (Zl_xl) “e
XA® (zy—xx)n* (21,7 - - ,28)

=(- V)N Z (2Nw1

wN)‘5

Xyw* ks, - - HkNeN, - (14)

The other type (A) diagrams are obtained by rear-
ranging the points «; in (14). Note that for each dia-
gram, there occurs another diagram which glves the
complex conjugate of the original dlagram as in Fig. 6.
If | ) is to be localized, then it is necessary that the

kN)e—iklxl—. .
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quantity
3 B (wiy, - - i) D* (Fiyg, - - Fiay),

be localized in the sense of (2). The summation is taken
over all arrangements of the x;. Now, let us set x1=%n41
and xe=x3=-- - =xy=2xny2=" - =%, and let x; be a
fixed point outside V_.(®R). Then (15) becomes

4N2[ (2N— 2) !] (ZV l).2 I Q(xl;x% e yx2) ) 2
AN (N~1)[ 2N —2) (V)2
XR@* (xlyxlax‘h e 7x2)q> (x2) te yxZ)-

(15)

The symmetry of & in its V arguments has been used
to obtain this expression. The first term arises from
those diagrams in which the points #; and xyy, are
connected to opposite sides of the diagram, and the
second term from those in which they are connected to
the same side. The factors 4N2[ (2N —2)!]J(N!)~2 and
AN (N—1)[ (2N —2)!](N!)~2 represent the total number
of diagrams of each kind. In the second term, complex
conjugate diagrams have been combined to give
R@*(xl)xl’xzr o "xz)q)(x% ot ':xZ)-

The function ®(x;,%s,- - *,%2) may be regarded as a
function of #, if we hold x, fixed. Its Fourier transform
with respect to x; vanishes except on the forward mass
hyperboloid, k2= —m?, and k10>0, by virtue of (14)
and (5). It is therefore an analytic function in the com-
ponents of x;— z;=x;44y, in the region y, &V, the
forward light cone. Thus, as before, there must be a
point x;® outside V.(®) such that

B (21D, 9,200, + + +,05) 0.
There are two cases to consider:
(1) ®(xq,- - -,22)=0. Then (14) becomes
AN (2N =2)1J(NV 12| ® (21,20, - - - ,22) [ 2540,

and the state cannot satisfy the localization criterion;
and

(2) ®(xs,- - -,x2)70, where we have
(WA (x2) - A(x2) [¥)— O] A (w2) - - A (2) [0)
=2(2N) (N 1)~2|®(xn, - - - ,22) | 2520

In each case, we have been able to construct points x;
all outside of V.(®) where (¥|A(x1)---A(xew)|¥)
# (0| A (%)) -+ A(x2x)|0). We have therefore proved
that a state of the form

N
I\P>=Z V—n/2¢n(k17' o )k") fklj. * 'yk">
n=0

cannot satisfy criterion (2).

The theorem just proved allows us to confine our
attention to states having an infinite number of particles
in the sense explained above. If we attempt to discuss
these states by the diagramatic method of this chapter,
we find that an infinite number of graphs contribute to
the expectation value of any given number of fields. For
example, the sequence of graphs in Fig. 8 contributes to
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F16. 8
_— - T
—0 O

(¥|4(x)|¥). This quantity is, therefore, given by an
infinite series, of which a typical term is

if Y vfdazll . cdazﬁdylu . 'dayp—lwp*(zl" .. ’zp)
X\&p‘l (yh s 7yp-—1)A N (ZP_ x)

This series involves all the coefficients ¥, (21, * +,2,) for
all values of p. The condition that (¥|A4(x)|¥) be
localized is thus a very complicated condition on
the ¢,, collectively. There are similar conditions for
(V| A(x)A (2:) | ¥), etc. The only simplification that
appears is that diagrams with two or more points
joined together may be omitted. This is similar to the
situation above with (B)-type diagrams. Since further
analysis based on this method becomes very com-
plicated, we pass to the approach described in the next
two sections.

5. STATES OF THE FORM exp(iR)|0), R LINEAR
Consider the state vector

exp(iR)|0), (16)

obtained by applying an exponential operator to the
vacuum.” The fact that such a state always satisfies
our condition of localization when R is a Hermitian
operator depending only on the field operator 4 (x) with
xE® follows from the property of local commutativity
of the fields, and is therefore true in the case of inter-
acting fields having this property as well as for free
fields. Our further remarks in this section, however,
apply to the free-field case. The precise form of R will
be discussed later in this section, but for the present we
may imagine R to be of the same form as (1), but with
the integrations extending only over ®. To insure the
Hermiticity of R, the functions ¢; of (1) must be real.
Then since any point x; outside Vi(®) is space-like
with respect to the region R over which the integrals
defining R are taken, local commutativity insures that
[R,A(x;)]=0. It is then easily shown that the state
exp(¢R)|0) is localized, for

(0] exp(—iR) g A(x,) exp(iR)|0)

~(0] TT A (x;) exp(—iR) exp(iR)|0)

7=l

~(0] I 4(x)|0)

=1

14 The author is greatly indebted to R. Glaser (private com-
munication to J. 8. Toll) for calling these states to his attention.
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because exp(iR) is a unitary operator. The fact that
exp(1R)|0) is a localized state considerably enlarges the
manifold of such states at our disposal. One is led to
conjecture that all localized states may be expressed
in this form. Unfortunately, we have been able to neither
prove nor to disprove this assertion. We will, therefore,
confine ourselves here to as thorough an investigation
as practicable of these states, indicating at the end
some arguments supporting the conjecture.

First, it can be shown that the Poisson distribution
state studied in Sec. 3 can be put into the form
exp(iR) |0), with

R= f](x)A (x)dx
=2k Q2w) (7 (kw)a(k)+7(kw)al (k). (17)

If we expand |¥)=exp(iR)|0) in momentum eigen-
states, we find the expansion coefficient

(1/"") <k1; - ':kﬂ I‘I,>
= (G"/n!) (2"wye + cwa)t 7 (Ky,wi)* + - § (Kaywn)
Xexp(—% Zk w_llj(kyw) |2)’ (18)

which is the same as that for the Poisson distribution
state.

The property of R essential to give localization is
that it involves only A4(x) with x restricted to ®.
Equation (17) is therefore not the only form possible
for R. Another very natural form we might choose is
the following:

5
R= f Prg(@) ()

= fd“x(g(x)—(—a-—A (x)—A4 (x)—a-g (x)), (19)
dxo axo

where g(x) is a localized solution of the Klein-Gordon
equation. The integral is taken over a space-like surface
intersecting the region ®. This surface usually will be
chosen as a time plane xo=constant, although this is,
of course, not necessary. If we define the Fourier
transform of g(x) by

g(x)=2x 2V )t g(k)e**+g* (k)e—*=],
we obtain
R=—i T [a(k)g* (k) —at (R)g (k)].

This is similar to the expression (17), and the expansion
of exp(iR)|0) into number and momentum eigenstates
may be performed in the same manner. We find that
the expansion coefficients agree with those of the
Poisson distribution state (18), if we set

¢(@)= f a2/ A (v ) (),
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which makes explicitly clear the fact that g(x) is a
localized solution of the Klein-Gordon equation, since
7(x) vanishes outside ®.

We have investigated two different forms for the
operator R appearing in (16) in the case where R is
linear in A4 (x). Both of these forms give rise to states
of the Poisson distribution type discussed in Sec. 3.
Each form may be generalized to involve products of
more than one A4 (x). The generalization of (17) is given
by (1). The general form of (19) is

3
Rerol f Pary(x)—A (x)
z0=¢ axo

3 9
+ f f P, @ %72 (21,200)——
0%10 0%20

21o-zzo=t

XA (x1)A (x2)++--. (20)
The r:(%1,- - - ,&s) as well as the ¢;(x1,- - -,%,) of (1) can
always be chosen as symmetric functions of their
arguments.

Since we are looking for a general representation of
localized states, we wish to decide which of these forms
is the more suitable. This is accomplished by requiring
that the representation be unique. In the case of the
Poisson distribution state, we note that the expansion
coefficients ¥, determine the quantity j(k,w) uniquely.
This corresponds to the quantity j(k,w) if we employ the
four-dimensional integration (17), and to g(k) if we
use the three-dimensional integral (19) for R. Thus,
j(k,w) and g(k) are fixed by the state. However, ;(k,w)
is not sufficient to determine the function j(x) appearing
in (17), since it fixes only these Fourier components of
7(x) which satisfy the restriction k*—k¢?= —m?. The
other Fourier components, off the mass shell, are
entirely arbitrary inasmuch as they may be varied in
any way without affecting the state (16). In fact j(x)
need not even vanish outside ® in order that (16) be
localized. It is only necessary that a localized function
j(x) exists having the Fourier components j(kw) on
the mass shell. On the other hand, the function g(x)
appearing in the expression (19) for R is a solution of
the Klein-Gordon equation, and is therefore completely
determined by its Fourier components on the mass
shell. It is thus fixed uniquely once the expansion coef-
ficients (18) of the state are given. For this reason, we
will use the form (19) and its generalization (20) for the
operator R appearing in (16).

The nonuniqueness of the four-dimensional form can
be understood from a different point of view. Equation
(17) may be regarded as a linear combination of the
field operators at points in the region ®. A linear com-~
bination of quantities is unique only if the quantities
are linearly independent. The field operators in our
extended region of space-time, however, are not linearly
independent, since an operator at a given time z, can
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be expressed through the equation of motion in terms
of operators at another time x,’. Since only points
within the light cone contribute, we have a linear
relation involving only field operators taken at points
of ®. In the other case, the integral (19) involves only
field operators and their time derivatives at a given
time. These are dynamically independent quantities,
:and therefore no linear relation between them exists.
“This explains why we obtain a unique representation
-with (19) but not with (18).

6. STATES OF THE FORM exp(iR)|0), GENERAL

Having discussed states of the form (16) with R linear
in A (x), we now pass to a consideration of more com-
plicated forms of R. The general form of R is taken to
be (20), with 7,(x1,- -+,xs) a localized solution of the
Klein-Gordon equation symmetric in all of its argu-
ments. The expectation value

(W[4 (x)--A(wn) | ¥)
=(0|exp(—iR)A () -

may be expressed in the form

-4 (x.) exp(iR) | 0)

O[T (x1)- - -T'(x,) [ 0), (21)
with
T'(x)=exp(—iR)A (x) exp(iR)
= A (x)+exp(—iR)[4 (x), exp(iR)]
=4 (x)+Z -—[[ ‘[4@),R],R]---], (22)

n=1 n

where the #th term contains the #-fold commutator of
A(x) with R. Thus, the expectation value of a product
of field operators 4 (x) in a state |¥) reduces to the
vacuum expectation value of the product of T operators
(21), T'(x) is given in terms of A(x) by the infinite
series (22). The exact form of I'(x) will depend upon
the functions 7,{x,---,¥.) which define R. Suppose
that 7,=0 for #>N, i.e.,, R is a sum of terms in each of
which at most N operators 4(x) appear. We will
express this by writing R=0(47¥). It is easily seen that
the commutator of an operator of order p with an
operator of order ¢ is an operator of order p+4¢—2. It
is clear then that the nth term of the series (22) will
be of order

(A+N=-)+E =2+ -+ N=2)=14+n(N~-2).

Thus, if N> 2, the operator I'(x) is of infinite order in
A(x). For N=1, the #=0 term, which is just 4(x), is
of order 1, and the term n=1 is of order zero. The
remaining terms vanish. For N=2, each term of the
series is of order 1. These two cases are therefore par-
ticularly simple. The first, N=1, is the Poisson dis-
tribution state which we have already discussed at
length. For this state, I'(x) is given by

I'(x)=A4(x)+n(x), (23)
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where the ¢ number 7,(x) is to be identified with the
function g(x) of Eq. (19). For the case N=2, we take
R to be

R= ffdaxld Xt (xl,xg)——-— “—A (xl)A (.’)C2) (24)

dx1e %0

By making use of the fact that r(xy,2,) is a symmetrical
solution of the Klein-Gordon equation, and therefore
satisfies the following equation:

d
7(x1,%2)=— f &y’ Ay —x1 )—r(x1 »%2),

xm

we obtain
a a
[A(x),R]=2¢ f f 31 @201 (201, %09)—

%10 Oxag

X A(x)A{x—x2)

5
—2% f P (00— A (1),
0x10

whére we have also used the commutation relation
[A(x),4(@")]=iA(x—="). The n-fold commutator
[[---[4(x),R],R]---] may be computed similarly:

[[‘ ) ‘[A (x)’Rjykjy' : .]

= (22')"f .- fd%y . -ﬁxnr(x,xl)aé

X10

a9
Xr(@n,x0)—"+ 7 (Xn_1,8n)——A (xn).
X20 0% a0

We therefore find that

3
T@=A@+ [Fr()-—AR), (25)
8x0’
) =3 (=2r f By - dax,,r(x,xl)————-
=l 9! %10
)
Xr(xhx?) vt '"_—_“'r(xﬂ—lyx’); (26)

Xn—1,0

by substituting these expressions into (22). For N>2,
it is also possible to give the form of I'(x), but we will
not do this here.

There is a strong similarity of the relation between
A(x) and T'(x) to that between 41, (x) and Aqu(x) ina
relativistic field theory with interaction. The corre-
spondence is exact if we allow interaction with an
external source. This is easily seen from the example
given in Sec. 3. The relation

T'(x)=exp(—iR)A (x) exp(iR)
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is analogous to the relation
Aous(x)=STA4 1, (x)S.

A relation of the form (22) also exists between in- and
out-going fields if we introduce the phase matrix 5 by
S=exp(—in). There is one point of dissimilarity
between TI'(x) and the outgoing field of a system such
as that described by the quantum electrodynamics
where no external current acts. There, the outgoing
field is invariant under displacements, whereas in our
case the localized nature of the operator R destroys the
displacement invariance of I'(x) considered as a free
field. Thus the vacuum expectation value of a product
of T' operator does not have the simple properties of
the Wightman functions.? They are not, for example,
functions of the coordinate differences only, and do not
have the same simple analyticity properties. It is still
possible, however, to draw certain conclusions by means
of analyticity properties, as we shall do below in the
case where T has the form (24).

Before proceeding further, we will note that, since
T'(x) is obtained from A(x) by the unitary transfor-
mation exp(—iR)A(x) exp(iR), it must satisfy the
same commutation relation: [T'(x),I'(y) |=3A(x—y). In
the case where R is linear in 4 (x), N=1 above, this can
also be seen directly from the expression (23) for I'(x),
since 71(x) is a ¢-number function and thus commutes
with 4 (x). For the case N=2, where R has the form
(24) and T'(x) the form (25), we find

[T(x), T (y) ]=iA(x—y)— iy (w,3) +iv (y,2)
+i [ oy (2@ 897,
It is therefore necessary that vy(x,y) satisfy the relation
1659 ~109) - [ P12 /000y () =0,

This is not an independent relation, but follows identi-
cally from (26).

It is clear that the condition of localization places
certain restrictions upon the region of space where
v(x,y) may differ from zero. It is our purpose to find
out what these restrictions are and to find the corre-
sponding conditions for the function r(x,y) in terms of
which v(x,y) is defined. Let us assume that on the
reference time plane over which the integral (25) is
taken, y(x,y) and its derivatives with respect to x, and
¥o and its mixed second derivative with respect to xo
and yo all vanish when either « or y lies outside a large
but bounded region § of 3-space. These four quantities,
v(x,y) and its 3-time derivatives, when given for all
space at a given time, completely determine ~(x,y) for
all space-time, since they provide the initial values from
which v (x,y) may be computed from the Klein-Gordon
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equation. The region 8 is arbitrary, and may be taken
much larger than ®, the region of localization.
From (25) we obtain

OITET(){0)
(0] AW A()]0)
+if day'wy,y')%w (=)

d
+i f &3y (x,x’)—,A("') ' —v)
axo

]
i f f &' Py'y (5,5 )y (x,y) ;
axo' Oyo

XA® (@ —y'), (27)

where we have used the relation
0] A4 (¥ [0)=1iAD (x—y).

The sum of the last three terms on the right side of (27)
must vanish when both x and y are outside V.(®).
We denote these terms by a, b, and ¢, respectively. The
Fourier transform of the singular function A appear-
ing in (27) vanishes except on the forward mass
hyperboloid k2= —m?, and k¢>0. Therefore, as in Sec.
4, it is an analytic function of the components of the
vector ¥ whenever the imaginary part of x lies in the
forward light cone. We conclude that the quantity ¢ is
analytic in x, and the quantity b is analytic in y. The
argument of Sec. 4 can therefore be applied to show
that if these functions vanish over any extended region
of space-time in their analytic arguments, they must
vanish everywhere.

The localization condition requires that the quantity
a+b+c together with its three time derivatives, vanish
outside the union of the regions ®@XTUV and UXA.
® X is the cartesian product of the region ® and the
whole space,'® denoted here by V. In consequence of our
assumption that v(x,y) vanishes outside of the region
8X 8, it is evident from (27) that ¢=0 outside of VXS,
that 5=0 outside of 8§ XU, and that ¢=0 outside of
8X 8. Now, consider the region (0—8)X (§—®), shown
schematically as the shaded region in Fig. 9.

In this region e3¢ must equal zero. But we have
shown that b and ¢ vanish there. Thus, ¢ must also
vanish. We can conclude from this by means of the
analyticity of ¢ in the variable x that ¢ vanishes for all
x when y is in (§—®). We may, therefore, subtract the
region VX (8—®) from the region we have already
found, and obtain the result that =0 outside of VX ®.
By an entirely similar argument, 5=0 outside of ® X V.
The localization condition may now be applied to show
that ¢=0 outside the union of §X® and ®XS. The

15 Tn this section, we use ® to denote the three-dimensional

region over which the integrals in (5.7) extend, and not the four-
dimensional space-time region used previously.
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same results apply to the three time derivatives of each
of these quantities.

It is possible to find a restriction on the region where
v(x,y) may differ from zero from the above. From (27)
we obtain

9
Ima=} [ Pyry)—AG—y).  (28)
d Yo

Here, we have used A®(x)=1(A(x)—1AD(x)). It
follows immediately from this and the properties of the
A function that Ime=—3vy(y,x). The corresponding
relation between the three time derivatives may be
derived in the same way after differentiating both
sides of (28). Taking into account that Ime and its
derivatives vanish outside VX ®, we find

dy(xy) dv(xy) &v(xy) 0
8x00yg
if (x,y) ERXT.

v(xy)=
axo ayo

(29)

Equation (29) implies that v(x,y) for arbitrary y is
localized in « in the region Vi (®). Our argument shows
that (29) is a necessary condition that the expectation
value of the product of two fields satisfy the localization
criterion. That it is also sufficient is obvious from Eq.
(27). Note that we may add a linear term of the form
(19) to the expression (24) for R without interfering
with the above argument. In fact, the localization con-
dition for (0|T'(x)|0) requires that g(x) and dg(x)/dx,
be confined to the region ®, so that it does not enter
into the above considerations.

It has now been shown that condition (29) is equiva-
lent to localization of the state exp(sR)|0), where R is
given by (24). Is it possible to conclude from this that
r(x,y) and its time derivatives are zero outside of ® X ®?
It is obvious from (26) that this property of r(x,y) is
sufficient to guarantee that +y(x,y) satisfies (29). Fur-
thermore, if we assume only that 7(x,y) is confined, for
example, to the cross-shaped region UX &+ ®&XV, (29)
can only be satisfied if a large-scale cancellation occurs
among the terms of the series (26) for v(x,y) at points
x lying outside of ®. It seems unlikely that this is pos-
sible, although we have not been able to prove its
impossibility. It is shown in the Appendix that Eq. (26)
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may be inverted and 7(x,y) expressed in terms of v(x,y):

r(x,y):i (_l)nf--‘fd%l---(ﬁx,,_l

n=1 25

i) ]
Xy (@p)— - ——y(xa_,y). (30)
X10 6xn—1.0

In order to derive (30), certain very restrictive and
ad hoc assumptions must be made about the function
r(x,y). We cannot, therefore, claim general validity for
this relation. However, if these assumptions are satisfied,
it is clear from (30) that r(x,y) with its time derivatives
must be confined to ®@X®. For, in consequence of con-
ditions (29), each term of the series (30) is equal to zero
when « lies outside ®, and so also their sum. Then, from
the symmetry of r(x,y) in x and y, we conclude that it
also vanishes when y is not in ®.

We will now give a summary of the results of the last
two sections. Our aim in considering states of the form
(16) was to provide a general representation of states
satisfying the definition of localization (2). Two different
forms of the Hermitian operator R were considered, and
the first rejected because the corresponding represen-
tation proved to be nonunique. The second form of R
is determined by a sequence of functions 7,(xy,- - -,xa.),
each of which is a solution of the Klein-Gordon equation
independently in each argument. We have shown that
when R is linear in the field, the function 7,(x) must be
localized in the region V. (®). When R is quadratic in
the fields, we proved that 7,(x,y) must be zero outside
of V,(®)XV_(®R), subject to certain assumptions on
the nature of 7,(x,y).

In order to give a complete proof of the generality of
the representation (16), we would have to show (a) that
any state can be written in the form exp(iR)|0) if
7a(%1,- - -,%,) is not restricted to be confined to any
particular region of space, (b) that the localization
condition then requires that 7,(x1, - - %) vanish outside
Vi(®R)X---XV.(®R), and (c) that the representation
is unique. The results of this section and the last show
that (b) and (c) are true in some simple cases. Although
it has not been possible here to give a complete general
proof, it is encouraging to find that the conjecture that
(16) is a general representation of localized states is
substantiated in those cases in which it could be verified.

7. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a definition of
localization based on taking the field variables as the
primary measurable quantities. This enables us to
avoid some of the difficulties which occur when one
formulates such a definition in terms of particle ob-
servables. Our definition is completely Lorentz in-
variant, since it is formulated in terms of Lorentz-
invariant quantities and refers to the situation of the
field over all space-time. Two states localized in different
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regions of space are not expected to be orthogonal
because the two regions of localization V,.(®;) and
V. (®R,) always overlap, however far ®; may be removed
from ®,. It may be verified that two states of the
Poisson distribution type discussed in Chap. III are not
orthogonal. Our definition thus seems satisfactory and
appropriate to the current formulations of quantum
field theory.

We have given results concerning the nature of the
states satisfying the localization condition. It was seen
in Sec. 5 that there is a large class of such states ex-
pressible in the simple form exp(iR)|0). We have given
arguments indicating that eny localized state may be
represented in this form, and proposed a general
method of proof. While we have concentrated our
attention in a large part of this thesis to the free-field
case, this representation offers promise of being valid
and general for the case of interacting fields as well.

Our motivation in taking up this problem was the
hope that the results might be useful as the basis for a
general approach to scattering problems in field theory.
It does indeed appear that the states satisfying our
definition of localization do provide an idealized de-
scription of the initial and final states of scattering
processes which is nearer to the physical reality of pro-
duction and detection than the customary idealization
of single particle states. It is possible that by applying
the methods of this paper, some of the difficulties asso-
ciated with the asymptotic condition might be clarified.
It is even possible that a description of scattering
experiments might be given without appealing to the
asymptotic condition. Such a description would neces-
sarily be more complicated in some respects. For
example, the theory of Sec. 4 shows that localized states
may not contain a finite number of particles. This
requires that any description of scattering in terms of
localized states involve an infinite number of S-matrix
elements between states of definite particle number.

However, it is easily seen from our example in Sec. 3
that if the current j(x) is weak, we obtain a localized
state in which the vacuum amplitude dominates, and
the one-particle amplitude is much larger than the
remaining amplitudes. It may, therefore, be possible to
isolate the one-particle scattering terms from the
others by a limiting process in which the strength of the
current approaches zero.

It is not possible at present to evaluate completely
the merits and defects of such a procedure, but it is
hoped that the results of this paper will provide the
foundation of a useful alternative to the conventional
description of the scattering process in quantum field
theory.
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APPENDIX: INVERSION OF EQUATION (26)

In order to invert Eq. (26), we introduce a complete
orthonormal set {¢:(x)} of solutions of the Klein-
Gordon equation:

]
d3 ,'* ] = ,'5,']',
f X (x)—q&axo (x)=0 (A1)

Licdi(®)e*(y)=iA(x—y).

o;===1 according to whether ¢;(x) belongs to positive
or negative energy. We define the quantity 7:; by

o= [ d3xd3y¢.*<x)—«(x,y)—¢,(y>,

dxo yo

(A2)

r(%y)=— Z aioiipi(x)d*(y).

The second equation (A2) follows from the first upon
making use of (Al). The reality and symmetry of
r(x,y) require that r;;=r;* v;; is defined in a similar
way in terms of v(x,y), but v.;;7v,* because v{(x,y) is
not symmetric.

We now choose the set {¢:(x)} in such a way that r;;
becomes a diagonal matrix, and set r;;=rad;; After
introduction of the newly defined quantities, (26) is
transformed into

toeys= (€72 —1)d;;.
Thus, v;; is also diagonal, with eigenvalues
vi= (1/ios) (€27 —1),
This equation may be solved for 7;, yielding

—2igr;i=log(14i0:y:). (A3)

The quantities y; are complex numbers lying on a circle
of unit radius and center at the point +1. If 7, is such
that «; lies within the unit circle centered at the origin,
then (A3) may be expanded into a convergent power
series in v;:
w (—1)*
21:0‘;7 ,'=Z ( )

n=]1 n

(ia’ )"

If this expansion is possible for all r; then we may
reintroduce 7(x,y) and v(x,y) by means of (A2) and
obtain Eq. (30):

r(x,y)= f( l)nf fd3x1 ¥ xny

n=1

3
sy (Xn—1,9).
xn—l.O

X'Y (x’xl)—' *

dx10
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Vierbeins are used to analyze the Einstein-Schrédinger unified field theory, in both its real nonsymmetric
and complex Hermitian versions. It appears that the skew-symmetric part of the real affine connection
is related to spin rather than to electromagnetism. In its complex form the theory does appear to describe
the electromagnetic field, since the vierbein analysis shows that gauge transformations arise in a natural
way (the spin is then related to the skew-Hermitian part of the affine connection). The resulting identi-
fication of the electromagnetic field tensor implies that Einstein’s choice of Lagrangian is physically unsatis-
factory and an alternative Lagrangian is proposed. Although the electromagnetic field is thus geometrized,
neither Lagrangian represents a unification of electromagnetism and gravitation.

1. INTRODUCTION

URRENT interest in unified fields is centered on

the Einstein-Schrédinger theory.! This theory
exists in two main versions. The first, which is due to
Einstein,? is based on a metric tensor and an affine
connection which are complex and Hermitian. Later,
Einstein,? following Schrodinger,* adopted the second
version, in which these quantities are assumed to be
real and nonsymmetric. The formalisms of the two
versions do not differ greatly, but we shall see that
they lend themselves naturally to different inter-
pretations.

A considerable amount of effort has gone into
studying the physical significance of these theories.
Despite this work, their interpretation remains obscure.
The main aim of this paper is to point out that if the
theories are rewritten in terms of vierbeins,’ a rather
natural interpretation suggests itself. The main reason
for this is that the vierbeins are closely related to a
group (the infinitesimal holonomy group®) whose
physical significance can be recognized from our ex-
perience of atomic physics.

In Sec. 2 we study the real nonsymmetric form of the
theory. It appears that the skew-symmetric part of the
affine connection (I''j) is related to the spin angular

momentum of matter rather than to its electromagnetic
properties.” Since, in addition, atomic physics suggests

1V. Bargmann, Revs. Modern Phys. 29, 161 (1957); B.
Kaufman, Helv. Phys. Acta. Suppl. 4, 227 (1956); A. Lichnero-
wicz, Theories Relativistes de la Gravitation et de L’Electromag-
netisme (Masson, Paris, 1955); M. A. Tonnelat, La Theorie du
Champ Unifie &’ Einstein (Gauthiers-Villars, Paris, 1955).

2 A. Einstein, Ann. Math. 46, 578 (1945); A. Einstein and E. G.
Straus, Ann. Math. 47, 731 (1946); A. Einstein, Revs. Modern
Phys. 20, 35 (1948).

3 A. Einstein, Can. J. Math. 2, 120 (1950); The Meaning of
Relativity (Princeton University Press, Princeton, New Jersey),
3rd ed. 1950, 4th ed. 1953, 5th ed. 1955; A. Einstein and B.
Kaufman, Lowuis de Broglie, Physicien et Penseur (Albin Michel,
Paris, 1952); Ann. Math. 59, 230 (1954); 62, 128 (1955).

¢ E. Schrédinger, Proc. Roy. Irish Acad. 51, 163 (1947); 51, 205
(1948); 52, 1 (1948); 56, 13 (1954); Space-Time Structure (Cam-
bridge University Press, New York, 1950).

5H Weyl, Z. Physik 15, 323 (1929).

8 J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954),
2nd ed.; A. Lichnerowicz, Theorie globale des connexions et des
groupes d’holonomi (Cremonese, Rome, 1955)

"D. W. Sciama, Festschrift for Infeld (Pergamon Press, New
York, to be published) ; T. W. B. Kibble (to be published).

that gauge transformations are imaginary, it is natural
to adopt the complex form of the theory for electro-
magnetism (the spin then being described by the skew-
Hermitian part of the affine connection).

This complex form is examined in Sec. 3. It turns out
that the group associated with the vierbeins contains
the gauge group as a normal subgroup. This enables
one to identify the vector potential and the electro-
magnetic field tensor. In consequence, Einstein’s
Lagrangian is seen to be physically unsatisfactory, and
an alternative Lagrangian is proposed. Both Lagran-
gians consist of the sum of two essentially independent
terms, so that although the electromagnetic field is
geometrized, it is not unified with the gravitational
field. If such unification is desired, a new idea will be
needed.

2. REAL NONSYMMETRIC THEORY

We first show by means of the vierbein analysis that
in a space with a symmeiric metric tensor g;;, the most
natural interpretation of I'yj; is that it is essentially
the flux of the material spin angular momentum. We
then consider the implications of this result for the
Einstein-Schrédinger theory.

A detailed discussion of the relation between spin
and affine connection has been given elsewhere’; here we
shall describe only the main points. The essential step
is to derive field equations in vierbein form by the
Palatini method; that is, by varying a Lagrangian with
respect to the vierbein and the affine connection inde-
pendently. When the Lagrangian contains a term de-
scribing a material field with spin, it turns out that I'é;,
has a skew part I'?j; which is simply related to the spin
flux S¢jy.

We begin by introducing the vierbeins. These are
four linearly independent real vector fields e(a), which
in a given coordinate system have components e;(a).
It is convenient to choose orthonormal vierbeins, so that

gii=n(aB)ei(a)e;(B), (2.1)
where
100 O
vet=|0 10 0
00 0 —1
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and the summation convention is used for the Greek
indexes which number the vierbeins. For a given
metric tensor gi;, the vierbeins are defined up to a
Lorentz transformation which can vary arbitrarily with
position in space time.

We now introduce an affine connection for these
vierbeins. To do this we parallelly transfer the vierbeins
at one point P to a neighboring point P’ by means of
the affine connection I'?;;. The transferred vierbeins will
differ from the local vierbeins at P’ by an infinitesimal
transformation O(aB), say. In an affine space, this
transformation will depend linearly on the displacement
PP'(=dx?); that is,

O(aB)=0,(cB)dx>.
We thus have?

[9e(a)/ 022 ]+ T7 16" (@) +0q(eB)er (6) =0, (2.2)

and O,(aB) may be called the vierbein affine connection.
So far we have been dealing with a general affine
differential geometry. The basic relation (2.2) can now
be specialized in various ways. Of these, the two most
important are:
(a) To assume that I'?,, is symmetric. It can then
be eliminated from (2.2), to give

/()04 (By)—e*(8)0,(ay)

af?”(c’t)_eq @ der(8) .

x? dx?

=ey(7){e%(B)

We shall call this the integrability condition for O,(a8).7

(b) To assume that O,(eB) is skew in « and 8. This
would mean that the transformation between the
transferred and the local vierbeins is generated by a
skew matrix O(af), so that it would be a Lorentz trans-
formation. This in turn means that the length of a
vector is preserved by parallel transfer, which also
follows from the fact that when O,(eB) is skew it can
be eliminated from (2.2) to give [using (2.1)]

agi

g =—-FTiugl 4+ Tiyg=0. (2.3)
JdxF

It is important for what follows to realize that condi-
tions (a) and (b) are completely independent of one
another. Only when both hold is the geometry Rieman-
nian.

We now rewrite general relativity in the vierbein
formalism. This means that our basic variables are
e:(@) and O,(eB). The more familiar variables g;; and
I'%;; can then be computed from (2.1) and (2.2). Since
the preservation of length by parallel transfer is charac-
teristic of general relativity, we shall assume that O,(a3)
is skew. We can define a curvature tensor from the

8 It may not be possible to construct a vierbein field globally in
a nonsingular manner. However, in this paper we are interested
only in relations which hold in a neighborhood of any given point.
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change in an arbitrary vector A (a)[=4:¢*(e)] when it
is parallelly transferred around an infinitesimal closed
circuit. The result is

aoq (aﬁ) aop (043)

xP dx
+0,(av)04(¥8) — Oq(ev)0(v8),

which is skew in p, ¢ and &, 8. This curvature tensor (or
rather its projections on surface elements) generates the
infinitesimal holonomy group. The curvature scalar R
is given by

Rm(aﬁ) =

R=¢7(a)e?(B) Rypy ().
In the absence of matter, the Lagrangian density is

€R,
where

e=det[e;(a)].

Variation with respect to e?(«) leads to the gravitational
field equations

RP (a) = 07
where

Ry(a)=er (B)Rpq(aB).

Variation with respect to O,(a8) leads to the integra-
bility condition for O,(e8).? It follows that I'7,, is
symmetric and that the geometry is Riemannian.

Now let us suppose that there is matter present,
described by an additional Lagrangian which depends
on a function ¢ and its first derivative, in the manner
of unquantized relativistic field theory. Variation with
respect to e?(a) now leads to

Ry(a)—3Re, (a)=Tp(a)
or

R(aB)—3Ré(aB) =T (eB),

where R(ef)=e?(8)R,(a). Here T (af) is not, in general,
symmetric unless the material Lagrangian depends on
e?(a) only through the symmetric combination gre

The variation with respect to O,(e) is not quite so
straightforward, since it involves the spin flux of
matter. This flux is given by

Si(ap)=[0L£/0(3¢/0x") 1S (eB)¥,

where the skew matrix S(eg) defines the way ¢ trans-
forms under a Lorentz transformation.! Now for the
matter Lagrangian to be invariant under position-
dependent Lorentz transformations of the vierbeins,
derivatives of y which appear in it must be rewritten as
covariant derivatives with respect to the vierbein affine
0O,(aB).” This means that the matter Lagrangian will
contain the term

S$7(a8)0,(eB).

® H. Weyl, Phys. Rev. 77, 699 (1950).

1], Rosenfeld, Acad. roy. Belg. 18, No. 6 (1940).

1L E. M. Corson, Introduction to Tensors, Spinors and Relativistic
W ave-eguations (Blackie and Son Limited, London, 1953).
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In consequence, when the variation with respect to
0,(aB) is carried out, there will be a contribution from
the matter Lagrangian, and the integrability condition
for O,(aB) will not be satisfied (as first pointed out by
Weyl? for the Dirac electron). In this case, I'j; will no
longer be symmetrical, and in fact?

e 1a ix
Dip=S—38°S" u—30:"S" i1,

where

Sipn=-ej(a)er(8)S*(aB).

We may note that this conclusion depends essentially
on the fact that we have used the Palatini method of
varjation. However, we can look at the situation in
another way. It will be recalled that in one interpreta-
tion of general relativity the field equations are not
regarded as a restriction on the geometry of space time.
Instead they represent an identification of the Einstein
tensor as the energy-momentum tensor of matter. The
justification for this identification is that the Einstein
tensor is the simplest one (apart from g;;) that iden-
tically satisfies the required conservation equations. On
this view, the introduction of a material Lagrangian
merely provides a phenomenological means of describing
the Einstein tensor.!?

We can adopt the same point of view here. If we
write X?(aB) for 6R/80,(aB) [X?(aB8)=0 is then the
integrability condition for O,(aB)], we can simply
identify X?(aB) as the spin flux of matter, since it
satisfies the identity”

(3/057)[eX?(a) T+ 2eX?(0p)Oy (B) = R (o) = T (),

which will then express the conservation of total angular
momentum (spin plus orbital). From this point of view,
the introduction of a function ¢ with prescribed trans-
formation properties under a Lorentz transformation
is just a phenomenological way of describing X?(af3)
or I“,;;f.

So long as the vierbein affine connection O,(a8) and
the curvature tensor Ry.(aB) are assumed to be skew
in @ and g8 and, therefore, the associated infinitesimal
holonomy group to be the Lorentz group (or a sub-
group), we expect the theory to describe only the spin
(and, of course, energetic) properties of matter. To
bring in the electromagnetic field, the theory must pre-
sumably also incorporate the gauge group. This it
would do if we supposed that O,(e8) has a symmetric
part, for then O,(aa) would serve as a vector potential.
(Its transformation law is

0,/ (aa) =0y (ca)-+ (0 Inb/ dx?)

under a vierbein transformation of determinant 4.) Of
course, lengths would no longer be preserved under
parallel transfer. The simplest assumption for the

20f course, the material Lagrangian also describes the non-
gravitational behavior of matter. One of the goals of unified field
theory is to construct a geometrical scheme so complete that no
material Lagrangian need be introduced at all.
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symmetric part O,(eB) of Op(aB) is
Op(ﬂ)=Kpa(aﬁ)-

This just corresponds to Weyl’s!® original gauge theory
of 1918 (except that Weyl then worked with a sym-
metrical T¢;;). For a general O,(e8), we retrieve
Eddington’s* theory (again with symmetrical I''j).
This change in the infinitesimal holonomy group of
the space is, in fact, achieved in the Einstein-Schrédinger
theory at the cost of assuming that the “metric” tensor
g:; is nonsymmetric and that it satisfies the equations

ag'

i g S
g-:]—;kE;'I'I‘llkgl]'f'PJklg”l:O
X

either a priori, or from the Palatini variation of a
suitably chosen Lagrangian. This equation implies that
lengths are not preserved under parallel transfer [since
in the last term, the covariant indexes of I'ij are in
reverse order, cf. (2.3)]. It also differs from (2.3) in
its implication!4 that I'i;; is completely determined by
g, since (2.3) imposes no restriction on I'’jz.* From
a geometrical point of view, however, this introduction
of g;; seems quite unnatural. A better formalism can

be devised on the basis of our experience with the
Weyl-Eddington theory. In that theory, a decisive step
forward was made (under the influence of quantum
mechanics) when the length change under paraliel
transfer was converted into a phase change.!® Corre-
spondingly, the vector potential Op(ce) became imag-
inary. This development strongly suggests that if the
Einstein-Schrédinger theory contains the electromag-
netic field, this fact will appear most naturally in the
complex form of the theory. This suggestion is studied
in the next section.

3. COMPLEX THEORY

In this theory, the metric tensor g;; is assumed to be
complex and Hermitian. The vierbeins are now also
complex,'® and can be chosen to be orthonormal in the
sense that

gii=n(eBei(a)e*(B), (3.1)

where * means complex conjugate. For a given g;;, the
vierbeins are defined up to a (quasi) unitary trans-
formation [“quasi” because the signature of the Her-
mitian form (3.1) is 2], which can vary arbitrarily with
position in space time. The relation between a real non-
symmetric tensor g;; and vierbeins would be more com-
plicated, and at one time Einstein? regarded this as a

19?11)'1. Weyl, Space-Time-Matter (Dover Publications, New York,

“A S, Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1923).

15 F. London, Z. Physik 42, 375 (1927); H. Weyl, ibid. 56, 330
(1929); V. Fock, ibid. 57, 261 (1929).

16D, W. Sciama, Nuovo cimento 8, 417 (1958).

17 A, Einstein, Revs. Modern Phys. 20, 35 (1948).
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decisive reason for using the complex form of the
theory. However, he did not develop this point.

Under parallel transfer to a neighboring point, the
vierbeins will differ from the local vierbeins by a
complex transformation, leading to a complex vierbein
affine connection which we shall call u,(e8). We then
have the equation

[9e?()/ 029 14T 7567 () +uy (B)er () =0,

where I'?,, is now a complex connection.
We can specialize (3.2) in two main ways:

(3.2)

(a) By assuming that I'?,, is Hermitian. It can then
be eliminated from (3.2) to give

e?(v)e* (a)ug(By) — e*7 (v)ed(B)us* (ay)
=e2(8)[9¢*?(ar)/ 927 ]—€**(a) [ BeP(B)/0x7]- - -.  (3.3)

We shall call this the integrability condition for u,(a3).

(b) By assuming that #,(aB) is skew Hermitian in
a and 8. This would mean that the transformation
between the transferred and the local vierbeins is
generated by a skew Hermitian matrix #(aB), that is,
it is a (quasi) unitary transformation. This in turn
means that the Hermitian length (g#74;4 ;%) of a vector
A, is preserved by parallel transfer, which also follows
from the fact that when u,(e8) is skew Hermitian it can
be eliminated from (3.2) to give [using (3.1)]

(8g%9/ 0x¥)+T gt +T*uig =0,

If, in addition, we assume (a), that is, that I'?,, is
Hermitian, (3.4) becomes

(3.4)

g+l p=(9g"/3x%) + Tiugli+Tiug=0.  (3.5)

We note for future use that in case (b)

to(ae) =1 Im (9 Ine/0x%) —i Im I'7p,. 3.6)

We now rewrite the Einstein Lagrangian in vierbein
form. The Riemann tensor is given by

Rpo(of) = [du,(aB)/dx?]—[dus(aB)/8x7]

+up (0 )1 (¥8) — (e )up (v8),
and is skew in p and ¢ and skew Hermitian in @ and 8.
The Lagrangian is then

&R,
where
eo= (det gi;)}=[¢]
and
R=e?(a)e**(8)Rpq(af).

Note that both € and R are real.
The variation with respect to e?(a) leads to

Rp ((x) =0,
where

Ry (a)=e*2(B)Rpe(B).

475

The variation with respect to #,(ac) leads to

822,,=0
(see Appendix). The variation with respect to #,(af)
does not immediately lead to the integrability condition

for u,(aB). We must first “extract its trace” by making
the transformation

' (@B) =up(aB) — fu:(vy)5(aB)+3i Im(8 Ine/dx7)6 (a3)
for which

' () =i Im (8 Ine/dx?) (3.7)

(cf. Schrédinger’st transformation for I'#,,). Then
4, (af) satisfies the integrability conditions (see Ap-
pendix), and the associated affine connection I'?,, is
Hermitian and has

Im I‘l”m-—— I"”&q=0

[from (3.6) and (3.7)]. In terms of the primed variables,
we have
RP, (@)+3e* (@)Ry, (88)=0. (3.8)

Equations (3.5) [with I''?,, replacing I'?;,], (3.7), and
(3.8) are then equivalent to the equations of the
Einstein theory:

g:14=0, Ti=0, Ru=0,
R,\k’+ % ()\i,k_)\k,i) = 0.

We now consider the physical interpretation of this
theory. The vector potential is clearly #,(ac), since
(quasi) unitary transformations of the vierbeins of
determinant e induce the transformation!®

4y (aa)=1,(aa)+-1(36/ 3x?).
Accordingly, the Maxwell field is given by
Fpg= Rpe(ca)

=Rrrpq
[from (3.6)].
With this identication in mind, we re-examine the
Einstein Lagrangian. It can be written in the following
form

aR= (e (@)e*(8)— et(@)e*>(8)]
X[Rog(af)+ Roc(aB) -

We now write

Ry, (“_G_) = %qufv (@B)+Spq (015)
and put
Rpq (a\@)""qu (aﬂ) el (aﬂ) .

Then Q,,(aB) and F,,8(eB) are irreducible under quasi-
unitary transformations.'® In terms of these irreducible

18 The theory could be somewhat simplified by assuming the

Weyl-type relation
tp(af) =11y (vy)8 (aB)

to hold. In this case Spe(aB) =0, and the part of the theory asso-
ciated with unimodular quasi-unitary transformations would be
more closely related to the ordinary gravitational theory.
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quantities, the Einstein Lagrangian becomes

€oR= ¢ee? (Ol) e*e (ﬁ)qu (0113) +%g DU pq-

The variation of the first term in this Lagrangian with
respect to #, (o) Implies that the I connection asso-
ciated with #,'(a8) is Hermitian. The second term,
which is added to the first in a nonunitary fashion,
yields g»2,=0 on variation with respect to u,(ca).”®
It would clearly be a Maxwell-type Lagrangian if g»¢
could be interpreted as the conjugate of F,, in the
sense of the Born-Infeld theory.® However, this would
require that g,, should reduce to AF,, for weak fields,

which is not, in general, true with our present field
equations. It is, therefore, not surprising that the
equations of motion of singularities do not contain the
Lorentz force.?

In order to obtain a correct description of electro-
magnetism, we must replace the term g?2F,, by one
more closely related to the familiar Maxwellian Lagran-
gian, e.g., a?"g®F . Fp, (cf. reference 22 for another
choice). One will then obtain the source-free Maxwell
equations and the contribution of the Maxwell stress
tensor to the gravitational field equations, which ensures
that the Lorentz force is acting on singularities of the
electromagnetic field.?® If a nonsingular description of
charges is desired, there are three possible approaches.
First, one can introduce Wheeler-Misner* wormbholes
into the topology of space time. Second, one can do
without field equations and simply identity (§77g%F,),q
as the current density j*. Finally, one can introduce a
material wave function y and a material Lagrangian L,y
If ¢ transforms like a density of weight A under (quasi)
unitary transformations of the vierbeins, then I, will
contain the term!®

X] pup (aa) y
where
) oL, L,
y4

P awawn) o(oy*/ax?)

*

The variation with respect to #,(aa) will then lead to
Mazxwell’s equations with source term. Unless the
matter is spinless, that is, unless y is a scalar density,
L,, will also make a contribution to the variation with
respect to #,’(efB). By considerations similar to those of
Sec. 2, it can be seen that the spin of matter will give
rise to a skew Hermitian part of I'*;. Of course, from
the geometrical point of view, this introduction of ¢

18 This shows the group theoretical significance of the %’ trans-
formation and the corresponding Schridinger* transformation to
his “starred affinity.”

(133313. Born and L. Infeld, Proc. Roy. Soc. (London) Al144, 425

27, Callaway, Phys. Rev. 92, 1567 (1953); W. B. Bonnor,
Ann. inst. Henri Poincaré 15, 133 (1957).

% B. Kursunoglu, Phys. Rev. 88, 1369 (1952); W. B. Bonnor,
Proc. Roy. Soc. (London) A226, 366 (1954).

# L. Infeld and P. R. Wallace, Phys. Rev. 57, 797 (1940).

2 J. A. Wheeler and C. W. Misner, Ann. Phys. 2, 525 (1957).
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is purely phenomenological, and has no fundamental
significance.

It is to be emphasized that although the electromag-
netic field is geometrized in this theory, our Lagrangian,
like that of Einstein, is nonunified in the sense that it
consists of a sum of unrelated terms. The reason for this
is that the infinitesimal holonomy group is nonsimple;
it has a normal subgroup consisting of transformations
of determinant e¢®(8>40). Correspondingly its generator,
the curvature tensor, is not irreducible (as it is in Rie-
mannian geometry), nor is the scalar curvature which
acts as the Lagrangian in Einstein’s theory. The alter-
native Lagrangian proposed here does not even try to
be irreducible.

Einstein has attempted to overcome this difficulty by
introducing new invariance groups which mix up the
terms in his Lagrangian, but these new groups do not
appear to have physical significance, and the device
seems to be a purely formal one. In any case, it is
ineffective for the physically reasonable Lagrangians.
We conclude that if unification is desired as well as
geometrization, a new group will be required. There are
some grounds for thinking that this new group may be
the symplectic group. This question will be discussed
elsewhere.
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APPENDIX

We here derive the integrability conditions for %, (a3)
from the vanishing of the variation of [ eoRdr with
respect to %,(af). For a variation du,(Au)

dR=eP(\)e**(u)ous (W) p—e*(N)e*? (u)du, (Au)
+et(N)e*2(B)ug (uB)on, (M)
+e?(a)e** (u)up(a)ou, (Au)
—eP(N)e** (B)up(uB)ous (A
—e*(@)e*? (g (el )dus ().
We therefore require

feoBRd1'= 0.

This can be simplified by partial integration, which
leads to

{eoe* (M) e*?(u) — eoe?(N)e™* (1)} »
+up(ua){ eoe® N)e*? (a) — eoe?(N)e**(a) }

Fup(ah){eoe?(@)e* (u) — eoe*()e*? ()} =0. (A1)
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If this equation is contracted over u and A, we obtain
22 ,=0.
The full equation can be simplified bthriting
£* () = — e0e?(N)e** () (er) — eoe” (W) [ ¥ () / 327 ],
x°* (M) = — eoe® (@)€*? (u)up (aN)+ eoe™? (1) [ Be* () /027 ].
Then (A1) is equivalent to

£’¢7+X’t,— Eppyata_xptpars

+ (aéo/axr)ags— (aéo/ax ‘)6,":0, (AZ)
where

&= et()\)er*(ﬂ)ga()‘ﬂ);

Xe=e(N)e* (m)X* ().

We note that the integrability conditions (3.3) for
#p(af) are equivalent to?

Satr'l'xstr: 0.

We therefore want to avoid the extra terms in (A2).
To this end we make the transformation?®

e (uar) = ths (uar) — S1ae (vy ) (ua)
—3i Im (8 Ine/0x")3(ua). (A3)
Now

£°p= —epttr (@) + €0 (9 Ine*/3x7)

% Strictly speaking, this gives the integrability conditions for
up* (), but this is unimportant since the theory is invariant
under complex conjugation.

26 The last term has the opposite sign from that used in the
text since we are here really finding the integrability conditions
for u,"*(aB).
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and
XPpr=— €oth,(0c) — €o(0 Ine/9x7).

Thus

£P1p—XPpr=2(0eo/ 0%7)

= Eppr._xprp
from the contraction of (A2). Also, contracting (A2)
gives
4(EPprtXPpp)= EPrpt-XPpy.

Hence, (A3) can be written

B (uer) = o (uer)+ (1/850) (EP,p—i—X"p,)& (pe)
= “r(ﬂa)‘l' (1/250) (fppr+xprp)3 (I-'-a)

We now introduce £";, and X’¢,, defined in terms of
u,’ (ua). They are given by

E =5 (£ XP1p)0,,
X'ty =X — 3 (EPprtXPrp)8,°
Hence,
Eop X0 = £ X — 8,5 (5P +3XP,,)
=6 (%Eppr"‘%xprp)
= £t X 00— 8, (XP 1y — §XPrpt+3£700)
—o;* ( Ppr— %Eppr'*" %xprp)
= 84X —XP 0,5 — EPp,0y®
- (6eg/6x‘)6,'+ CEYCERL
=0

from (A2). This implies that «,’(aB) satisfies the integ-
rability conditions, which was to be proved.
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The eigenfunction form of the Green’s function is derived from the characteristic form of the Green’s
function for the nonrelativistic Coulomb operator. This derivation shows how the wave boundary condition
of the characteristic form of the Green’s function is related to the branch cut in the continuous part of the
spectrum. An application of the eigenfunction expansion form of this Green’s function is discussed.

N the theory of scattering, the Green’s function is
commonly displayed as an eigenfunction expansion.
The diverging (or converging) wave character of the
Green’s function is dictated by the sign of the imaginary
component of the energy parameter. In the continuous
part of the spectrum, the eigenfunctions may display
both the diverging and converging wave behavior for
large distances from the scattering center; for example,
they may behave as [sin(kr—a)]/kr, with r the
distance and % the wave number of the continuum.
Consequently, it is not obvious that the expansion
form of the Green'’s function does behave asymptotically
as asserted. However, the characteristic form of the
Green’s function displays the wave boundary conditions
explicitly. This is illustrated for the one-dimensional
case of the Sturm-Lionville operator on the interval
(0,).

(d i (x)+x)c<xx') b(a—2)
—p(x)— =8(x—ux
dxp T q s ,

u(x> s )v(x<;\)
G(xx)= .
pE)W (u,0)

A is a parameter, which is not an eigenvalue, and W is
the Wronskian of the two linearly independent solutions
u and v appropriate to the boundary conditions of the
problem.! The eigenfunction expansion form of G is

Un(x)un* (2’
Gxa)=2 —(—)L,
A=A,

with A, the eigenvalues such that X\, <O for the discrete
part of the spectrum and A,>0 for the continuous part
of the spectrum. It is thus interesting to inquire how
one can proceed from one form of the Green’s function
to the other form, and to learn just how the imposed
boundary condition at infinity forces a particular sign
on the imaginary component of the energy.

The relation between the characteristic form of the
Green’s function and its spectrum is well known, and
this relation leads to the expansion theorem.'—3 In this

YE. C. Titchmarsh, Eigenfunciion Expansions Associated with
Second Order Differential Equations (Oxford University Press,
London), Vol. I (1946); Vol. II (1958).

(1;§§than Marcuwitz, Communs. Pure and Appl. Math. 4, 263

3 Bernard Friedman, Principles and Techniques of Applied
Mathematics (John Wiley & Sons, Inc., New York, 1956). Chaps.
3 and 4; B. Friedman and E. Gerjuoy, Scattering Problems in
Nonrelaitvistic Quantum Mechanics, Research Report CX-4,
Cont. AF 19(122)-463, New York University.

paper, the eigenfunction form of the Green’s function
is derived from the characteristic form of the Green’s
function for the special case of the Coulomb operator.
(The expansion theorem for this operator was derived
by Titchmarsh.*) The Green’s function that satisfies
Eq. (1a) is given by Eq. (1b).®

[V*+ (2ue?/BR)+ K*]G® (R R"; K)=8(R—R’), (1a)
G = — (K /4x) 3 (2041)Py(cos®) 4,
=0
1 (I—|m|)!
Pi(cos®)= 3 ————( d
X Pji™(cos) Pi'™l (cosh’)eim(e—¢")
4, = H®[I+1— (ic/K), 2+2; —i2KR]
X Li[l41—(ic/K), 214-2; —i2KR],
R>R,
T G WL L
—2W, (214-1)!
X (2KR)1eKER,
L;=e(me2K) [P[l+l— (/LC/K)]!
2+
X(ZKR’)leiKR’(W1+W2),
Wit We=1F\[l+1— (ic/K), 21+2; —i2KR'],
c=p/may, ao="1*/me. (1b)

In Egs. (1a) and (1b), e=electron charge, u=reduced
mass, #=Planck’s constant divided by 2w, a,=first
Bohr radius, and K?*=2uE/#?, with E the energy.
(The absolute-value signs which appear on m in the
addition theorem are omitted in the subsequent work.)
W, are the two linearly independent solutions of the
confluent hypergeometric equation that have the
asymptotic forms given in Eq. (1c).®

H,® ~exp(£i)[KR— (ir/2)+mn+(c/K) log(2KR) ],
m=argl'[l41— (ic/K)]. (1c)

4 Reference 1, Vol. I, p. 87; Vol. I, p, 134.

® Robert A. Mapleton, Phys. Rev. 117, 479 (1960).

¢W. F. Mott and H. S. W. Massey, The Theory of Atomic
Colsl;sums (Oxford University Press, New York, 1949), 2nd ed.,
p. 52.
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In Eq. (1b), R>R’, and this will be assumed in the
subsequent calculations. Since the eigenfunction ex-
pansion of G is symmetric in R and R/, only this case
has to be treated.

Make the substitution K=4A* in Eq. (1b) and
consider the integral on a circle of infinite radius in
the complex A plane as given by Eq. (2a).2

1 ax’
IP=—@¢ ——— GHN;RR),
2mid N'— (A +ie) (2a)
A=K, >0.

(In the remaining discussion of the diverging wave
form of G, the superscript (+) is omitted.) On this
circle,
in[ AR’ — (Ix/2
A~ (ei[x'm—(lx/m/R)\’})Xsml: (1r/ ):l,
Rlxli

and
N3i4.aN
lim 0

L,
Vo N — (Aie)

provided that 0<arg\' <2x. I of Eq. (2a) is zero; the
integral is evaluated at N’=A-+ie, and the resulting
closed contour is deformed so that A+7e is excluded,
but the branch cut on (0N <) and the poles of G
on the negative N’ axis are included. With this task
accomplished, Eq. (2a) is written as Eq. (2b).

1 dNGQ\)
G\ +ie)=—— _
2t Jer M —(A+ie)

—2 (Residues of [G(\")/N — (A+-1¢) ]

at the poles of G(\’)). (2b)
C; is a contour that encircles the branch cut in a
counterclockwise direction. Call this contour integral I..

1 o dN
S
2mild o N — (WH-ie)
ax’

———G(Nem) |-
+fo N— (i) * )] (29

At this stage of the development, it is easy to under-
stand why A+ie is associated with the diverging wave
form of G. In order to derive Egs. (2b) and (2c), the
principal value of arg\’? was restricted by the inequality
0<arg\*<s. This specification of arg\’ is consistent
with the relation K=lim.,o (A\+¢)} but is inconsistent
with the form (A—ie)}, since the branch cut is ap-
proached from below, and thus, lim.o (A\—ie)}=—K.

In order to establish the relation between G on
opposite sides of the branch cut, several integral
representations are introduced.®

\)
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(c— 1) ! (z+,0+)
Filac;2)= f dtett e ({—z)—s,

2w

(c—1)! pod
Wi(a,c; 2)=- f diett@—) ({—z)~e,
27t J (3a)

3a
(c—1)!
Walac; z)=

)
e* f diet(t+42) ),
27 —®
—a=—]—14(ic/\'}),
a—c=—1—1—(ic/\'}).

In Eq. (3a), the notation (z+,0+) signifies that the
contour integral encircles the points {=z, 0 in a counter-
clockwise sense. (There is a branch cut connecting
t=g, 0.) The contour which represents 1F; is replaced
by two contours. Each of these contours proceeds
from (— =), encircles one of the points t=2, 0 in a
counterclockwise sense, and returns to (—). The
contour that encircles =0 defines Wy, and the other
contour is transformed to encircle (=0 by the sub-
stitution #=¢—2—t. W, , are multivalued functions,
but they are rendered single valued by the following
choice of initial and terminal values of the phases at

=—o0,
Wa: argt, (—wtow), arg(t+z), (—wto—m);
Wy: argt, (—wtow), arg(t—z), (wtom).

An examination of the contour that defines F; shows
that this selection of phases is consistent with the
position of ¢==z=—i2\IR relative to {=0 in the ¢ plane
for A real and positive. It is easy to derive a useful
identity with the use of Eq. (3a). Thus,

(e—1)!

2w

WFilc—a,c; —2)=

(O, —2+)
f dte‘t“‘(t-}-z) (“—c),

and with the change of wvariable, {+z=u—1¢, this
becomes

((;— 1)! (z+,0+)
Filc—a,c; —2)= e* f die't e (1—z)~e,
2w

from which relation the identity emerges.”
e Fi(a,c; —2z)=e"*F1(c—a,c; 23).
From Eq. (3a), one obtains
Wi(her?)
=Wi(l+14(ic/AY), 21+2; i2\IR)

@411 po ;
— f dtett[—l—~l+(ic/)\ )1
2 —»

(=m—>m)
X (E—2NIR)-Ui+Gelnhy)
(r—m)
= e\ Beere DO, (141 (ic/MY), 2142; —i2\R).
"W. Magnus and F. Oberhettinger, Special Functions of

Mathematical Physics (Chelsea Publishing Company, New York,
1949), English edition, p. 87.
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The factor e®w/*" originates from the factor e that is abstracted from ({—i2\IR)—IH1+(ie/ M1 5o that the
phase of this term varies from —# to —m, which phase is required in the integral that defines W,. Now that
the relations of the quantities above and below the branch cut have been derived, Eq. (2c) can be written

in the form given by Eq. (3b).

155 ars
4 0+

=0 m=—1

X (NIR") e B+, F L (14-1— (ic/N3), 20425 —i2VER) (Fr(b+1— (ic/NY), 21425 —i2\V3R).

The change of variable \’=%? is made; the relation,

m)!
)P{"(cosG)Pz'”(cosa’)e""‘(d’—'f”) f

©  IN\A
0 )\"“'LG— )\’

[TLA1=GeADI s, (2VIR)!
L+

(3b)

B F (141~ (ic/k), 20+2; —i2kR") = e~ #R' \F (141 (ic/E), 2142; i2kR"),

is used, and several definitions and identities are invoked.

214+1 (—m)!
4 (+m)!
dk = dkk2d9k = dkadBk sinﬂkd¢k,

NP (cosB) Pim(cosh)eim(s—4")

im

= N2 f APy (cosh) Pim(cosy)ei™ =41 P (cosby) Py (cosh’ )eim (99"

Srim(R) = (2/7)N 1 Pi™(cosB) P (oS8, ) g (#—ok) g (o7 /2k)

These facts are used to rewrite Eq. (3b) as Eq. (3c).

P41 (ic/k)]

oy “=(2kR)e* R, Fy (141~ (ic/k), 2142 ; —i2kR).

Ic=z Z

1= m=—1

o 1 f dk¢k Im (R)¢k lm* (R/)

(3¢)
Aie—&

These continuum functions are normalized to the delta function; that is, they satisfy the following relation®:

®© v

z X

LU=0m'=1' m=—1

dR¢klm (R)¢k’ Um' (R) =

6 (k— k’)& (Ok— 0k’)8 (¢k_ ¢k')

k? sinf,

—s(k—K').

The next task to accomplish is the evaluation of G at its poles.

The factor |T[I+1— (ic/A})]|2 of Eq. (1b) is written
as T[I+-1+ (ic/AN)IT[I4+1— (ic/A})]. There are poles
of the gamma function at /41— (i¢/A})=— (n—I—1),
and »n assumes the values /41, /42, - - -. Therefore, A
satisfies the equation #\=—c¢/n. Since arg\} is re-
stricted by 0<argh <, this is the correct pole; for
I+1+4 (ic/N)=—(n—Ii—1) would require that —=
<argh <0 which is not satisfied. In Eq. (3a), we have
—a=n—I1—1, a—c=—(n+I+1), —i2\R=2cR/n=x,
and

©+)
Fr(a,c; 5)= (2+1)1)/2mi f diett=(rtD
X (1— ) =D,

Since (—a) is a positive integer (or zero), the original
requirement that the contour encircle the point ¢=z is

8 A. Sommerfeld, Ann. Physik 11, 257 (1931); Robert A.
Mapleton, Phys. Rev. 109, 1166 (1958).

removed.® Consequently, one has the following relation:
Fi(—nt1+1, 214-2; %)
=Wi(—n-+i41, 21425 %)
(2i+1)![fart
" (D! [dt"+l

The Leibnitz Rule for the differentiation of a product
is used to show that Eq. (4a) is consistent with
Eq. (4b).90

et(i—x) "“H] (4a)

t=0

9 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(M]cGraw—Hill Book Company, Inc., New York, 1953), Vol. I,
p. 785.

0], Pauling and E. B. Wilson, Introduction to Quantum
Mechanics (McGraw-Hill Book Company, Inc., New York, 1935),
pp. 130-132; H. A. Bethe and E. E. Salpeter, Quanmm Mechanics
of One- and Two-Electron Atoms (Academic Press, Inc., New York,
1957), p. 13. (L.-1_2*"! of reference 9 =—Ln+z"+‘ of these
references.)
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(24+1) l(n—1—1)!

Fi=W;= Lpp2" (),
[+
(4b)
* [ (n+D1P
f dax? l+2e—a:[ Lo g y2t1 (x) ]2 =_—
0 ('Fl« - 1) !

The substitution p=1I-+1— (ic/A!) is used to evaluate
the residue of"*

I'(e) at u=-—(n—I-1).
126
NN = — oy,
(H1—pp
(—1)mt-1

Residue I’ e () = e,
esidue T'(w) lue (n—1-1) =y

These facts are collected to obtain Eq. (4¢).?
G\
—Residue [———-)——]
N —A—dedy ' yn?
¢'nlm(R)¢nlm*(Rl)
Atietet/n?

_[(2(;)3 A4+1 (n—1-D)1 (I—m) T
AI\a/ 8wn [0 (4m)!

2cR'\ ! 2cR
(Y 1w ()
)

L) ¢’nlm(R)

X P{cost)e™¢, (4c)
One observes that
o n—1
Z Z =22,
=0 n=l4+1 n=l l=0

so that with the aid of Eqgs. (2b), (3c), and (4c), one
obtains Eq. (4d) as the desired result.

Gnim(R)prim*(R')
Aietc/n?
¢k 1m (R)@eim™ (R')} {4d)
Atie— k2

GH(K; RR)= hm[z Y5

€] pel =0 m=—1

+ZZ

1=0 m==—]

The derivation of the expansion for the converging
wave Green’s function, G, is sketched. In Eq. (1b),
2iW, is replaced by —2iW,. The integral over the
large circle given by Eq. (2a) vanishes provided that
—2r<argh’<0. (In Eq. (2a), e is replaced by —e¢;
this will be assumed throughout the discussion; the

11 E, T. Copson, An Introduction to the Theory of Functions of ¢
Complex Variable (Oxford University Press, London, 1957), p. 207.
12 Reference 9, Vol. 11, p. 1664.
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superscript on G&) is omitted.) Thus, Eq. (2b) is
transformed into Eq. (5a).
1 ax’
G=——}{| —G
27 C1 )\’— ()\—’ie)
—>" (Residues of [G\)/N— (A —1e) ]
at the poles of G(\')), —2r<argh’<0. (5a)

W)

Equation (2c) is replaced by Eq. (5b).

1 0 ax’
e[ ——
2rild oy N —(A—i¢)

f ""’_'Gx.. - <>«>] (5b)

()\18—211')

From the discussion following Eq. (2c), it is seen why
A—1ie is appropriate to this converging wave boundary
condition. For the continuum part of the expansion,
precisely as before, one derives that

Wahe )= eizx*xe@ﬂn&)wlo\)_

Therefore, I, is given by Eq. (3c). The residues are
obtained from the poles of T[4 14 (ic/A})]:

1+ /N = — (n—I—1), iN=¢/n.

This is consistent since —nr<argh't<0. Several trans-
formations are introduced, which relations are derived
as under the diverging wave case.

ei)‘*RIFI(l"I" 1—(ic/N), 214-2; —i2MR)

=~ NE P (1414 (ic/A), 214+ 2; i2\IR),
W41 (ic/AY), 2i+2; —i2\IR)

= g Cre M= NER (114 (i/AD), 20-+2; i2\IR).

At the pole A= —¢?/n’, one obtains

e~ el (14 14 (ic/AY), 214-2; 12MR)
=g 2im Fi(—nt+i+1, 24+2; (2cR/n)).

Put IH+ 1+ (ic/AY)=p to get

1263
S
(+1—p)

Thus, the residue at p=— (n—I—1) leads to Eq. (4c),
and this completes the calculation.

A remark is in order relevant to the Green’s function
for the repulsive Coulomb potential. This case is
obtained by the replacement of ¢ by —¢, and it is easy
to show that the residues of G vanish at the poles of G.
Consequently, the spectrum of G is purely continuous
for the repulsive potential.

There is an interesting application of Eq. (4d) for
which only the continuum part of G contributes. The

A=
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solution of the scattering problem, ¥, is given by
41e
TE = "
Etie—H

with ¢; the incident state [H=H,+V, (E— Ho)¢:=0,
(E—H)¥=0], and the limit ¢— 0 is taken after the
calculation is performed.’* However, one of the require-
ments for this method of calculation to give a unique
solution is that the interaction potential V decrease
faster than R~ at infinity." In spite of the fact that the

(1;351\%. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
4'S. Okubo and D. Feldman, Phys. Rev. 117, 292 (1960).

MAPLETON

V of this paper fails to meet this requirement, the
quantity,
lim limd:iefGG:) (K; R,R)dR'e ',

=0 ¢—K
(qg~'=KK™)

does yield the correct coordinate dependence for the
Coulomb scattering problem. As might be expected,
the solution is not unique; not only is a divergent phase
factor present, but the normalization depends upon the
direction that g approaches K.115

15 Robert A. Mapleton, J. Math. Phys. 2, 482 (1961).
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A function which is defined in terms of the two-body singular wave-function matrix of Mgller acting on a
plane-wave state is calculated. In the paper by T. Pradhan, the function in question was obtained as the
solution of a differential equation. Here, it is found that the function has a normalization which is different
from the one assumed by Pradhan, and this behavior is attributed to the long-range character of the Coulomb
potential that is in the Mgller operator. An intermediate result of this paper agrees with the momentum-
space solution of the nonrelativistic Coulomb two-body scattering problem which recently appeared in a
paper published by S. Okubo and D. Feldman. As they show, the wave function must be renormalized to
obtain the correct cross section, and this view is adopted in this paper. Consequently, the normalization
assumed by Pradhan is reinstated. The Legendre expansion coefficients are calculated for the function,

(a—b cos8)—,

TN a paper published by T. Pradhan,! an approximate
method for calculating capture cross sections was
developed, and this scheme was used to calculate the
capture of electrons by protons passing through atomic
hydrogen. As an intermediate step in P, it is necessary
to calculate a wave function which is defined in terms
of a Mdller two-body operator acting on a plane wave.
This was not done, but instead, appeal was made to a
differential equation to obtain the wave function. If the
wave function had been derived from the defining
equation, it would have been found that the nor-
malization was different from that assumed in P.

In the present paper, the Mgller operator is used and
the wave function is calculated in position space. In the
course of the calculation, the quantity, as given by Eq.
(A), is calculated.

F=lim ieG(e,E)é . (A)
e
In Eq. (A),G is the Coulomb-Green’s function, and ¢

! Trilochan. Pradhan, Phys. Rev. 108, 1250 (1957). (This paper
will be callediP.)

is a plane wave. This part of the calculation is essentially
the position-space equivalent of the momentum-space
problem which was treated in the recent paper by
S. Okubo and D. Feldman.? In OF, a Green’s function
is calculated in momentum space to obtain the wave
function for the two-body, nonrelativistic, Coulomb-
scattering problem. They show that the wave function
must be renormalized in order to obtain the correct
result for the cross section; moreover, they attribute
this peculiar behavior to the long-range character of the
Coulomb potential. The wave function obtained from
Eq. (A) agrees with that of OF, and a transformation
to momentum space shows that the two results must
agree. With this information, it will become evident
that some of the subsequent work could be replaced by
the results of OF ; nevertheless, in the author’s opinion,
these calculations in position space are a worthwhile
complement to the momentum-space solutions of OF.

Some defining equations of P are reproduced here

25, Okubo and D. Feldman, Phys. Rev. 117, 292 (1960). (This
paper will be called OF.) :



482 ROBERT A.

solution of the scattering problem, ¥, is given by
41e
TE = "
Etie—H

with ¢; the incident state [H=H,+V, (E— Ho)¢:=0,
(E—H)¥=0], and the limit ¢— 0 is taken after the
calculation is performed.’* However, one of the require-
ments for this method of calculation to give a unique
solution is that the interaction potential V decrease
faster than R~ at infinity." In spite of the fact that the

(1;351\%. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
4'S. Okubo and D. Feldman, Phys. Rev. 117, 292 (1960).
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V of this paper fails to meet this requirement, the
quantity,
lim limd:iefGG:) (K; R,R)dR'e ',

=0 ¢—K
(qg~'=KK™)

does yield the correct coordinate dependence for the
Coulomb scattering problem. As might be expected,
the solution is not unique; not only is a divergent phase
factor present, but the normalization depends upon the
direction that g approaches K.115

15 Robert A. Mapleton, J. Math. Phys. 2, 482 (1961).
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A function which is defined in terms of the two-body singular wave-function matrix of Mgller acting on a
plane-wave state is calculated. In the paper by T. Pradhan, the function in question was obtained as the
solution of a differential equation. Here, it is found that the function has a normalization which is different
from the one assumed by Pradhan, and this behavior is attributed to the long-range character of the Coulomb
potential that is in the Mgller operator. An intermediate result of this paper agrees with the momentum-
space solution of the nonrelativistic Coulomb two-body scattering problem which recently appeared in a
paper published by S. Okubo and D. Feldman. As they show, the wave function must be renormalized to
obtain the correct cross section, and this view is adopted in this paper. Consequently, the normalization
assumed by Pradhan is reinstated. The Legendre expansion coefficients are calculated for the function,

(a—b cos8)—,

TN a paper published by T. Pradhan,! an approximate
method for calculating capture cross sections was
developed, and this scheme was used to calculate the
capture of electrons by protons passing through atomic
hydrogen. As an intermediate step in P, it is necessary
to calculate a wave function which is defined in terms
of a Mdller two-body operator acting on a plane wave.
This was not done, but instead, appeal was made to a
differential equation to obtain the wave function. If the
wave function had been derived from the defining
equation, it would have been found that the nor-
malization was different from that assumed in P.

In the present paper, the Mgller operator is used and
the wave function is calculated in position space. In the
course of the calculation, the quantity, as given by Eq.
(A), is calculated.

F=lim ieG(e,E)é . (A)
e
In Eq. (A),G is the Coulomb-Green’s function, and ¢

! Trilochan. Pradhan, Phys. Rev. 108, 1250 (1957). (This paper
will be callediP.)

is a plane wave. This part of the calculation is essentially
the position-space equivalent of the momentum-space
problem which was treated in the recent paper by
S. Okubo and D. Feldman.? In OF, a Green’s function
is calculated in momentum space to obtain the wave
function for the two-body, nonrelativistic, Coulomb-
scattering problem. They show that the wave function
must be renormalized in order to obtain the correct
result for the cross section; moreover, they attribute
this peculiar behavior to the long-range character of the
Coulomb potential. The wave function obtained from
Eq. (A) agrees with that of OF, and a transformation
to momentum space shows that the two results must
agree. With this information, it will become evident
that some of the subsequent work could be replaced by
the results of OF ; nevertheless, in the author’s opinion,
these calculations in position space are a worthwhile
complement to the momentum-space solutions of OF.

Some defining equations of P are reproduced here

25, Okubo and D. Feldman, Phys. Rev. 117, 292 (1960). (This
paper will be called OF.) :
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for convenience. In position space, the center-of-mass,
post coordinate system is used.® The cross section is
obtained from the R matrix

Ria=(¢s| Uss| waspsa), (P 35)
1
woz=14 U s, (P 23a)
En—T—Usgtie
1
¢,,,(23) = Xm+E—‘—_U23¢m(23), (P 24a)

" 1€
N(K)xm 1F1( K 1 i[Kfo K l.'o]) (P 36d)

Txn=Enxm, (T+Us)¥m(23)=Efm(23),
sa= 21 X1{X1] o)y
waspta= 21 wasxi(xz| ta)= 21 ¥1(23){x1| a)-

It will be shown that the asymptotic form of Eg.
(P24a) is different from the asymptotic form of the
assumed solution of Eq. (P24a) which is given by Eq.
(P36d). In this paper, the function in question, ¥m, is
calculated from an expression which is equivalent to the
relation which defines ¥,.. This is given by Eq. (B).

® 37

1€
¢m= WRXm="———Xm»
Em—' T"— U23+ze

(B)

This prescription for the calculation of ¥ avoids the
objectionable operator manipulation which is required
in the derivation of Eq. (P24a). The operator acting on
xm in Eq. (B), sometimes called the singular wave-
function matrix of Mdller, is discussed elsewhere.* The
calculation of ¥, is the main task of this paper.

Some change in notation is employed for convenience,
and Fig. 2 of P should be consulted. m=electron mass,

MM,
M =proton mass, My=M+m, a=—, p= ,
M, M+M,

K=K,

my=am—m, x=r—ary, Ku1 1=K,

X;= (2r) i ErxtEer) ko =K,,

pta= (2m)Hpo (1) e (x7x0),
dv*= (2r)Fpo(ro)eKe-x, k,=K;, a=a/Kay,
agt=me*/h?, N(K)=T(1—ia)et=,

= N(K)xm 1F1(ic, 1; i[Kro—K-10]),

T=— R/ 2u)V2— (3/2m)V, 2, U=Un=—e/r,
(#/2w)K 2+ (#/2m)K*= (WK 1/ 2u) = En.
—:_]T—D—]ackson and H. Schiff, Phys. Rev. 89, 359 (1953).

(4M Gell-Mann and M. L. Goldberger, Phys Rev. 91, 398
1953).

Equation (P24a) is now written in position space. This
is accomplished with the use of the Green’s function®
of Eq. (1a) which satisfies the differential equation (1b).

G= (21r)‘5f dUaV exp{i[U- (x—x)+V- (.l’o-ro’)]}
KpP—U—uV?/m+ie
(V24 (u/m)Vr2+ K +ie)G
=8(x—x)8(ro—ro’).

?

(1a)

(1b)

Integrate over U and x’, and use the standard form,

_ (27r)‘3f aU exp[<U- (r—r')]

K4-ie—U?
exp[iK|r—1'|]

dr|[r—1'|

1

to reduce Eq. (P24a) to the form given in Eq. (1c).

TN ar
‘l,m= —1K1.x e@K-ro_'_ fg(ro,r)_etxor

21rdo r

X 1F1(ie, 15 i[Kr—K- r])]. (1¢)

The plane wave factor in K; which is common to both
sides of Eq. (1c) is removed. The resulting integral
equation for the Coulomb function has the incorrect
asymptotic form, and in accordance with the remarks
in OF relevant to Eq. (OF35), this equation has no
solution. This result is an example of the errors that
may incur in operator manipulations with a single
Coulomb potential. (If there were two Coulomb poten-
tials, each with equal and opposite charge, the resultant
potential at large distances would decrease faster than
the Coulomb potential.)

The calculation of ¥, as given by Eq. (B) is presented.
(The subscript on 7o is omitted.) G satisfies the differ-
ential equation (2a) and is given by Eq. (2b).

¢
[v 2+—( S +Kp2+ie ]

=3(x—x")5(r—1r"), (2a)
¢n(1)¢.*(1")dU exp[iU- (x—x') ]
= T —3 y 2b
G=0m %f K+ (2p/ 1) en— U+ie’ =

(€ =2ue/%?, e,=binding energy of hydrogen). In Eq.

8 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(M(‘:g;aw-Hlll Book Company, Inc New York, 1953), Vol. II,
p-1

6B. A. Lippman and Julian Schwinger, Phys. Rev. 79, 469
(1950). (See Eq. 2.32.)
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(2b), the integration over U and x’ is performed to get
Eq. (2¢).

Un= (2m)~te K IF  2me /hl=e,

b (1)@ *(r)dr’
F=3 Z ( ) ) eix.:'.

€ (2¢)
o K2+ (2men/ 1) +ie

In Egs. (2b) and (2c), ¢, are the normalized hydrogen
wave functions with the continuum part of the set
normalized to the delta function.”

With the normalized plane wave factor removed from
the right side of Eq. (2c), the quantity F can be written
as

F=iefGK(r,r’)dr’e"K"'.

In this expression, Gk is the complex Coulomb-Green'’s
function. In Appendix I, it will be shown that an
equivalent expression for F is

F=f[é(r—r’)-{-GxV]dr'e"K"', (V=—=2/a¢"),

provided that a plane wave can be expanded in the
hydrogenic set. This equivalence is commonly displayed,
symbolically, as 2¢Grpr= (1+GgV)pr. As mentioned
by others,* only the continuum part of the eigenfunction
expansion for Gg contributes to F by reason of the
presence of the factor e. This fact is used, and the
identity operator,
k] e—)\r’
—lim — ,
Ll W

is introduced to facilitate the integrations. Thus, the
new form for F is given below.

8 (ko (Dps* (Xt H+-)
F=—lim lim ie—
(K2 +-ie—R2)r'

0 A0 PN

The operator
d
—lim —
A0 a)\

is omitted until later in the calculation. A number of
relevant quantities are defined below.?

¢u(r)=N(E)L;(kr)Pi(cos®), a= (kay),

N(k)=

[t 7
21rl‘(l—ia)|_1-—e_2"“] ’

T(+1—io)
— L (i2kr)er
(2!

X1 F1(I+1—ia, 2042; —i2kr),

7 A. Sommerfeld, Ann. Physik 11, 257 (1931).
8W. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Oxford University Press, New York, 1949), 2nd ed.

Ll(kr)=

MAPLETON

1
Py(cos®)= Y. Ny, Pi'™(cosb,)

me=—]
(I~ [ml)! X Pyl (coshi)etmeree,
—\ml).

Nim= (l+ |m|)"
&*(r)=[N (k)L (kr") Pi(cos®") J*,

l
Py(cos®)= X NyPi!™ (costs)

m=—1

X Py!™l (cosh, eim¢kern),

1
Pi(cos®)= ¥ NyPi'™ (cosby)

m=—1

XPllml (Cosﬂx)gim(¢k—¢K>’

eX =% > (2u+4+1)i"N,,P,!?!(cosh,)

n=0 p=—n
X P, |7 (cosfk)er¢r—¢K) (r/2Kr' T .1 (K7').

The integration over the solid angle of t’ space is per-
formed to give Eq. (3a).

dk|N(k)[* =
F=41rief ——o—— " L;(kr) P1(cos®) P;(cosO) 43,
K2 4ie— k2 1= (3a)
a

A= ilf dr'r'e > Li* (k") (w/ 2Ky M 111 (K7').
0

With the aid of an integral representation and a
standard integral the 7’ integration can be performed.®

Fr(lH1+ia, 20425 12kr)
2~ (21 4-1) lgikr’

1
= f l_t)l—ia
T (I-+1—ia)T ((+144a) J_, _
X (1+t)l+iadlezktr”

(26yT(v+3) =
—___=f rJ ., (br)dreo,
@+ J,

y=141, b=K.

a=N—1kt,
From these two relations, 4; becomes
e (—D)H(K/B) 2+ fl di(1—=g) i (14-p)itie
2BT (I4-1—ia) o LU= (=BT
in which expression the identity,
LK™ (\— ikt T = [~ B(1— 1) (=B ] 440,
Bro=—iNk+(—, +)K/k,

has been used. In order to evaluate 4, a closed contour

9 W. Magnus and F. Oberhettinger, Special Functions of Mathe-
mati;gl Physics (Chelsea Publishing Company, New York, 1949),
pp. 33, 88.
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in the ¢ plane is used that excludes the branch cut, but
which includes the poles: branch cut, —1<¢<1; poles,
t=L1,2.

The phase of the quantity T is given below.

1—ty—i —2m, below cut
T= (———) , argl= [
1+t 0, above cut.

The contour consists of a circle at infinity which
connects the real axis interval

—1<t< o

above the cut with
o >(>—1

below the cut. Small semi-circular arcs join the regions
t<1, t>1

above and below the cut, and the contour is completed
with a small circle about

I=—1.

With the contour traversed in the counter-clockwise
direction, only the integrals on

—1<i1

remain, and the Cauchy residue theorem leads to Eq.
(3b) for 4.

wi(24+1) (2l—p)! [
(4RK)H(1—e7) pmo (I— p)IpIT(I— p+1—ia)L

k+in—K
><2F1(——p, A—p+1,1— p+1—ia; T)— (—1)P(k+z’}\+K)’—i“(k—i)\—K)‘““(

Several definitions are introduced and identities
noted.

) (kir—K) (k—iN+K) B— (K—i))?
- 4K 4K

k+in—K
B=———, A—B=(k—Kp+N,
2k

We= (EFK)+N\.

The series in Eq. (3¢) are summable, and for this
purpose all terms common to the factot

[T (—N-+1—ia) T

are found, which terms come from the following values

(k+i)\—K)l—ia(k—i)\+K)’+*’“(

4 _vri(—1)1+1(21+1)(K/k)’

R (41— ia) (1— 22)
dl 1_ l—ia 1 +ia
_[( e (14-1)+ ] . (G3b)
as (t_Bl.Z)H-l t=Bat

The Leibnitz’ rule for the successive differentiation of
a product is applied and a standard formula is used.!

dt 1 Al d—») dr
d_tl(fg)_zgo (I—p) !pz(dza—mf) "

f_—_ (3—6)_”"'1), g= (1__t)l—ia(1+t)l+ia’

a=m (=1 (2l—p)!
dat—» —lz(;_ﬁ)(zm—p)’
dar
d_g= (= 2)P(1—¢) G—rpie) (1 4-f) U—ptie)
45
T(+1—ia)
D Spra——— 2F1(-P, 20— p+1,
T(+1—p—ia) 1
—t
I—pt+1—ia;—).
P 2

These forms are introduced into Eq. (3b), the values
for =.,2 are inserted, and some cancellation is effected
to get Eq. (3¢).

4kK ) P
E—[K—i\]

4kK ) 4
B—[K+i\P

E+iN+K )]

X?Fl(_‘P, 2l—?+1,l—?+1—1a,———2—k‘— (3C)

of p:
p=N,N+1, -+l

This group of terms leads to the series below which is
summed.

—MNM)! —
2=t [ AN =N AU—N-DRB

(= N) NI (— N+1—ia)l 11

L =M(@-=N-1)
N 21

AN-DBL ... 4 (—1)-NB-N ]

(21—N)!
(= N)INIT(— N+1—ia)

(4—B)-V,
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One now sums over the allowable values of NV to obtain
the sum of the original series.

! (2l—-N)!
N=0 (I—N)INIT(I— N+1—ia)

1 w_
= ,,F,(—l, 14+1, 1—ia; ——).
Ir(1—ia) 4kK

(This is proven in Appendix II by the use of an ex-
pansion theorem.)

The second series of Eq. (3c) is treated in a similar
fashion, so that 4; can be written as in Eq. (3d).

(4— By~

1+1)ri [ k+K——¢)\)
kKT (1—ia) (1—e2r)L \ k— K+ir

w_
XzF'1(—l, I4+1, 1—ia; ————)
4kK

( 1)l(k——K——i)\ ia
k+K+i)\)
W,
XzFl(—l.l+1,1—ia;——)]. (3d)
4kK

Several identities are noted, and the phase of the
quantity 7! (defined previously) is examined at the
poles, t=81,2.

E+E—i\\i® My
1‘_1(62) ( ) =(_) H
k— K- w_

()= (k K—z)\)“" (M)i“
Y \errtan/  \w/

M=2—K2>—N—1i2\k.

One should first observe that W, do not enter into the
determination of the phase of T since they are non-
negative. The second point to note is that the poles are
in the lower half of the ¢ plane since A is non-negative.
With this information and the previous discussion of
the phrase of T, it follows that the limiting value of the
phase of M is given by

T, k<K, [t|>1

lim argM=[ .
A0 2r, B>K, |t <1

ROBERT A.
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F of Eq. (3a) is given by Eq. (3e).

F=21r25f i-(——)—t i L(kr) Pi(cos®)
K2+ie—k
Py costy ZTOM
R KT (1~ i) (1—-2+)

w_
X[W__ia 2F1(""l, l+1, 1—ia; —'—'—')
4kK

W,
.__( 1) szl( l,l+1,1"'10t,—)] (36)
4kK

Use is made of the relation?
T ()T (1—ia)=n/sin(wia)

and integration over the solid angle of k space is
effected to obtain Eq. (4a) from Eq. (3e).

P,(cos®)

!
= Y NuP)'™!(cosh,) P, (cosfr)eim (9K

m=1I

F=

1€ © dkkT (i) M i@t « '
f 3 Li(kr) Pi(cos®)
2rK

K24ie—k  i=0
w_
x[W_—i“ 2F1(—l, I+1, 1—ia; —-—)
4kK

Wy
—(—1)W, e 2F1(—l, I+1,1—1a; —)] (4a)
4kK

The operator
9
—lim —
A0 g

is applied to the relevant factor of Eq. (4a) to give
d 2ka(k?— K?)i«

—lim —M = —
A0 ax k2__K2

The resulting integral of Eq. (4a) can be made well-
defined by the substitution

K=q,
in all terms exclusive of the factor
(K2+ie—k2)—L
If the substitution
exp (K- t')=exp[i(¢K/K -1')]

is made, this result is obtained from Eq. (3a). After
the integration is accomplished, the limit

¢=K

¢g— K
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will be performed. For definiteness, ¢ is chosen so that
g<kK.

It is noted that the principal part of this integral is zero
in the limit,
e—0.

This fact is exploited by taking e sufficiently small. A
closed contour is selected in the £ plane that consists of
a small segment of the % axis which is closed in the
upper half plane so that the pole

k= (K2+ie)t
is included, but the branch point
k=g

is excluded. At this pole,

= ’l:/k(lo: (’L'/Kao)'l" (6/2K3d0),
and
real part (Za)>0.

In Eq. (4a), the first series of terms has the factor

(B— @) ieW—_ia= (k+or me—zrm
B¢
which dominates the factor
(i o | | e
(k+q)*

of the second series of terms for ¢ near enough to k.
Accordingly, the second term is set equal to zero. The
contour integration is performed (counterclockwise
sense) ; the limit is taken in the sequence

lim lim,

0 ¢—K
and the identity

oFi(—1, 141, 1—ia;0)=1
is used, all of which reduces Eq. (4a) to Eq. (4b).

F= sz‘(w)( )m i Li(Kr)P(cos®)

moeiX r

sinh(,,-a)(g) 1F1(ie, 1;i [ Kr—K- 1)),
o= (Ka)l, =1—¢/K>. (4b)

This is precisely Eq. (OF52). If the preceding integra-
tions are effected for
K<q,

the result is obtained from the relation

OG-

B'=1-K*/¢.

This same result is given by Eq. (OF56). The function
¥ is obtained from Eq. (2c), and it is seen that the
normalization is different from the one used in P. From
the relation, Eq. (P37),

wastta =2 m Ym(Xm|Ha,
it is easily established that
3 8a,? dKF (g) exp[i(Ke+K)-x]/a
Gobe™ (-ﬁa“) f [1+a¢| oKo—a— (Ko +K) |2

Tae’k 10
F(q)= 1F1(ia, 1 5 'L[:Kfo'—K l'o]) ;
sinh (ra)
><[(4:/;8)”"‘, g<kK, e
4/8)iers, ¢>K,  Kao

With this wave function, R, of Eq. (P35) is calculated
to be

32n%ae 2 1 s
Rpgm ———— exp[—— tan™! (—~—) ——]
[(1+pa’ P | pao pao/  pao
A [ (4/ B) e,
(4/8") e,
The same approximations used in P,
pP= lI'Kz,—K.,,z aK,,—Kb, a=s (pao)—l,

were used to calculate the preceding expression for Rp,.
Ry, is brought into agreement with (P43) with the
following renormalization scheme which is the same
as in OF.

sinh (ra)

9<p
>p

sinh (ma)

(4/8) =, ¢<p
4/8) e, ¢>p

Since a contains the scattering angle, this is 2 nontrivial
renormalization. From the considerations of the anal-
ogous problem discussed in OF, it appears that the
normalization adopted in P is the correct one.

It is of interest to repeat this calculation for the case
that e is replaced by —e. In this case, the contour in
the % plane encloses the pole

k= (K?—ie)t

in the lower half plane. With the use of the preceding
arguments it is seen that the second term in the bracket
of Eq. (4a) dominates. Several identities are invoked so
that the series may be recognized.®

r(1-ia)em[

™

w.
(—1) ZFI(—z, 141, 1~ia; —+)
4K

I (I+1+ia)T(1—ia)
" P+1—ia)T (144a)
10 A, Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,

Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. II, pp. 169-170, Eqs. 10 and 16.

w_
2F1(--l,l+1, 1+ioc;——),
4kK
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Fil+1—ida, 2142 —i2kr)et*”

= F1(+ 1+, 2142, i2kr)e
(—1)'Py(cos8) = P(cos[w—0]).

The results of the calculation are given by Eq. (4c) for
the case that
g<K.

P:W(Z)—ia -

LI*K Pl 1[""@
T l);) (Kr)Py(cos[r—@])

o

(z)_ia exp[ —iKr cos(r—0)]

sinh (7a)

X1F1(—ta, 1; —iKr[1—cos(r—©)]). (4c)

This is the familiar converging wave solution as it
should be.

The correspondence of the position-space calculations
of this paper with the momentum-space calculations is
now established. The pertinent equations of OF are
included for reference.

Uo f dp'G'(p',q)

¢ (p,0)=3(p— )~ ’
(p,9)=38(p—q) Bt (—p')

(Uo=2/do), (k2=K2, l'()—_-X). (OF 37)
G'(p,q)
ol dvH (v)
=s(p—q)+ . (OF 38)
ot [(F—F—iont (o—aT
H(v) is given by (OF42).
V=F W= lim, [ 206/ (p.0es
s (OF 52)
_ m 4 x (i, 1; i hr—k-x]).
sinh(mx)(ﬁ) e Fi(ta, 1;i[kx x])

The Coulomb-Green’s function of this paper satisfies
the integral equation

s(p—q)——

o) Ui dp'G(p,9)
P md ()

1
with the solution
G(p,@)=[F+ie—¢*]"'G’'(p,).

Therefore, F of this paper is given by

€
=lim li — / ipex
F elglq—»lkrilo Btie—g oG’ (p,@)e %,

which is seen to be identical to the solution in OF.

ROBERT A.
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APPENDIX I

It is of interest to see what assumption is implicit in
the relation

2u
f[a (r—r)é(x—x") —!—h—ZGV(r’)]x,,.dr’dx’
2u
= ‘ef de,dr,xm,
le

with G given by Eq. (2b). Integrate over U and X/,
[see Eq. (2¢)], to reduce the above relation to

" "* J ’V J
f[&(r— )+% S8V ]dr’e*x-f'
. n K24-ie+ (2men/H%)
) K "¢, (1), * (1)dr’
f w Ktiet Qmen/72)

the common plane wave factor in K; having been
removed. If the expansion theorem

) (l‘— !',) = Zn ¢n(r)¢n*(r,)
is valid for the function
e K- r,
one obtains

ek r=%" ¢,,(r)f¢n*(r’)dr’e""".

Operate on both sides of this relation with the operator

V24 K?-ie,
and use the identity

(V+EK*+ie)pn= (K*+-iet2men/ 1 — U)pn
to obtain the equation
(Utie)e® *
= SCme/ B R+iekoa(0) [ 6,400,

(U=—-V=2/ax).
Multiply this last equation with
$a(r),
integrate over r, and divide the result by
(K> +ie+2me,/#2)
to get the relation

f¢n*(r)dre““'

— (K2iet 2me, /A2 f 6% (1) (U-ie)eE dr.
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Multiply both sides of this expression by
én(1),
sum over #, and rearrange terms to obtain the result

N E DOV
f [m_r )+Zn: K iet2me,/ 72 ]dr ‘

. f (D), (X)dre® T
=1 .
€ n  K?4iet2me,/h?

Consequently, the results of this paper depend upon
the validity of the expansion of a plane wave in the
hydrogen set.

APPENDIX II

In this appendix a useful integral is evaluated. The
result serves a check on certain calculations performed
in this paper. The expansion of the quantity

(e—bw)=°, (w=cosh)
is derived. With the aid of the expansion theorem

—0) = 241
8¢ 0)—_—2( :—)P;(cosﬁ)Pl(cosa’),

sind  i=0

one gets
w f214+1
(a—bw)y—°c=Y (—)A Pi(w),
1=0 2

with
1

A= f P 1() (a—bw)—<.

Introduce Schldfli’s! representation

7 ,(e—=1)dt 27 @
Piw)=—  ——="—— (1),
i (—w)H

and interchange the order of integration to obtain
9-1

1 dw(a—bw)~°
Ay=— dt(tz—l)‘f —
2 -1 (t—w)H

The change of variable,
a—bw=zx,

is made, and (/+1)-partial integrations are effected.
With B; defined by the relation

21
A=— di(2—1)'By,

2mi

U E, T. Whittaker and G. N. Watson, 4 Course of Modern
Analysis (The Macmillan Company, New York, 1946), American
edition, Chap. XV.
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B, is given by

z+1I‘(l—c)I‘(H—r—l)l'(a—b)(’—c) (a+b)(r—o
S T(+H1-ol I.(t—l)(”’)—(l-f—l)(””]

T(1—c)(+r) 1 f(a—b)
T(r—c+1)l!

1= —

dy xH1=0
(x_ a+bt) @i+2)

(a+b)

The remaining integral is easily eliminated by reverting
to the original variable of integration and interchanging
the order of integration. The relevant integral,

f dt(p—1)
(t—w)”“’

d (2i41)

vanishes since

—_1\l=
— @ =0.

The contour integration is now accomplished.

27t (£—1)'dt 2=t gtb
— = (#=1)

mid (FD)ED (—1)1deD
(1) 1200
T =)=
A,=—2I+l T(1—c)(l+r—1)1(2b)"

=t (r+1—c)(—r4+1)1(r—1)!
[(a—b)— (= 1)@=+ (a+8) =9
Set r=s5+41 and rearrange to get

11 T=9@+s)! 1 1

/a—b)“
b T (s42—) (1—9)ls!l (a—b) D\ 25

(-1 a+b ’]
—(a+b)“‘”( Zb) '

This last result is recognized as

-1 a—b
4= [(a—b)(l—” 2F1(—l,l-|-1,2—c; ———)
b(1—c¢) 2b

a+b
— (=D a+b)2 2F1(—Z, I+1,2—c¢; _gb—)]

For the case that ¢ is a positive integer, this last formula
valid only when
c>l+2.

An application of this expansion is found from the value
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of the following integral:

N*(&)T (1+4-ia)
dr
X f e Fy(—ia, 1; —i[kr—k- F])e M+ 1
r
This integral is given in the appendix of P; its value is

(N4 K212\ — k?) e
D4 | K—k|2]e

I=4xN*(R)T (1+ic)

The phase of the quantity M is given by the following
scheme:
—M =N4-K?*+i2N\k— k2,

0, k<K

lim arg(—M =[ ,
el ) T, k>K

T, k<K

lim arg (M e“")=[ .
o 2r, kE>K
Note that this choice of phase agrees with the scheme
adopted for this term in the main body of the paper.
Put

c=14+ia, a=N-+E+K?, b=2%kK,
and

W= (BF K2+

in the expansion of

(@b cosf)—.

MAPLETON

. 21rN*(k)I‘(1+ia)e"M‘“§: (zz+1)
B i*Ke =\

w..
XP[(COSG)[ _—ia 2F1(—l, I+1,1—ia; -""——')
4kK

W,
- (— l)lW.}."i“ zpl(-l, l+1, 1—‘?:&; ""“)].
4kK
In Eq. (3e), abstract the factor
1edk IV ()
f ————L(kr) P;(cos®)
K24-je—R?

from each term. The remaining factor (independent of
r and ¢ and outside the bracket) is

2T (i) (U+1) N* (k) Mingra
kK )

Since
T'(1+4-ia) =1l (ia),

it is observed that these two results agree. This serves
as another method to accomplish the sum of the Jacobi
polynomials that occur in Eq. (3c).

Note added in proof. It will be shown in a forthcoming
publication that the results from Eq. (3a) through
Eq. (4b) can be obtained in a more straightforward
manner. This method utilizes the relation of the wave
boundary condition to the branch cut in the continuous
part of the spectrum. As a consequence of this relation,
that series of Eq. (4a), which is not appropriate to the
given boundary condition, does not occur.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 2, NUMBER 4

JULY-AUGUST, 1961

Modification of Effective-Range Theory in the Presence of a
Long-Range (r—*) Potential*

TaoMas F. O'MALLEY, LARRY SPRUCH, AND LEONARD ROSENBERG
Physics Department, Washinglon Square College, and Institute of Mathematical Sciences,
New York University, New York, New York

(Received March 3, 1961)

For short range potentials, there exists the effective-range
theory expansion &L+ cotn (L) = —1/A4 (L) +4ro(L)F2+- - -, where
n(L) is the phase shift for angular momentum L. For long-range
potentials, (potentials which vanish at large r only as some power
of 1/r), an expansion in k2 does not exist. For V(r) — constXr™
for r — oo, the term at which the expansion breaks down depends
upon L and upon #; 4 (L) cannot be defined if #<X2L4-3, while
for example for L=0 one cannot define , in the usual way if # <5.

A detailed study is made of the case n=4. This case is of con-
siderable interest since it arises, in the adiabatic approximation,
in the scattering of a charged particle by a neutral polarizable
system ; the present analysis is concerned with the scattering by

1. INTRODUCTION

FFECTIVE-RANGE theory,!'? which gives the
leading terms in the expansion of 221! cotn(L) asa
function of the energy, where n(L) is the scattering
phase shift for angular momentum L, has been a very
important tool in the analysis and interpretation of
low-energy nucleon-nucleon scattering data. Restricting
ourselves for the moment to the value L=0, it will be
recalled that for neutron-proton (or neutron-neutron)
scattering, one expects the shape-independent approxi-

mation?
k cotn(0)~ —1/A+3r.k? (1.1)

to be a useful one for £X kmax, Where, roughly, Znaxro=1.
In Eq. (1.1), A=4(0) is the scattering length and
ro=r,(0) is the effective range. For neutron-proton
scattering, a characteristic length is of the order of
10-% cm, as is in particular 7o, and one therefore
expects the shape-independent approximation to be
useful for energies up to perhaps 10 Mev.

The range of validity of effective-range theory must
to some extent be re-examined in each new application.
Nevertheless, in atomic physics, one might well
expect to have ro=tao, with ¢ .a number somewhat
greater than 1 and a, the Bohr radius ; one might further
expect that the range of validity of the theory would
again be given by kZ1/7,. Effective-range theory
would then be quite useful.* For the scattering of an

* This work was jointly supported by the U. S. Air Force
Cambridge Research Laboratories, the Office of Ordnance
Research, and the Office of Naval Research.

1 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949). See
also J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
21950; ; G. F. Chew and M. L. Goldberger, Phys. Rev. 75, 1637

1949).

2 H. A. Bethe, Phys. Rev. 76, 38 (1949).

3 With the exception of the spherical Bessel functions j(k7)
and #nr(kr), the angular momentum under consideration, when
explicitly indicated, will appear in parentheses; subscripts will
generally refer to the energy under consideration.

4The smallness of the numerical value of some characteristic
length, which is after all a dimensional quantity, is not necessarily
a measure of the usefulness of effective-range theory. Energies

a static potential, but it can be readily generalized to include
scattering by a compound (polarizable) system. The analysis is
very much simplified by the existence of known mathematical
solutions, Mathieu functions, of the Schrédinger equation with
V() equal to const X7, The expansion of & cotn(0) about E=0
contains a number of terms not present in the usual effective-range
theory, including a term linear in k. The expansion about the
energy of a weakly bound state does not contain these additional
terms. It is rather of the usual form, but the correction will be of
lower order than k% The leading terms in the expansion of
k2 cotn (L) for L0 are also obtained.

electron by an atom, for example, the theory would be
useful from zero energy up to energies of the order of
#2/ (2mry?)= (13.6/t) ev; for ¢ not too large compared
to unity, this interval is one of the most interesting
portions of the energy spectrum.

In point of fact, the situation in atomic scattering
processes is rather more complicated than indicated so
far, It is the purpose of the present paper to show that
ro as normally defined is infinite, and that the very
form of effective-range theory must be modified for the
atomic case.® The origin of the deviation from the
normal form lies in the fact that while it is not always
explicitly stated, the usual effective-range theory
assumes that the potentials are of short range, while the
effective potentials of atomic scattering theory are of
long range. We will refer to a potential as of short range
if it falls off faster than any power of 1/r. Thus, in
effective-range theory for short-range potentials and
for angular momentum L, one shows that there exists
the expansion

kA coty(L)=—1/A(L)+3ro(L)R2H0(*). (1.2)

It is very well known, however, than an expansion of
this form is not always valid. For a potential which
asymptotically approaches a Coulomb potential, the
very definition of phase shift must be altered; the

are in many regards ‘‘scaled” in relation to the characteristic
length, and it is probably true that in general the range of validity
of effective-range theory will cover a significant portion of the
energy spectrum. It seems fair to say that effective-range theory
was introduced in nuclear rather than in atomic theory not because
of the disparity in the values of the characteristic lengths, but
because of the lack of knowledge of the nuclear potential. To
the extent that the nuclear potential can now be considered to be
known, and to the extent that we restrict ourselves to scattering
by a compound system—these are of course very severe restric-
tions—effective-range theory, appropriately modified, is poten-
tially as valuable in atomic as in nuclear physics.

§ A preliminary discussion of the results of the present paper
has already appeared. [L. Spruch, T. F. O’'Malley, and L. Rosen-
berg, Phys. Rev. Letters 5, 375 (1960).] Equation (1) of this
reference contains a misprint; in the last term on the right-hand
side A2 should be replaced by A43.
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extension of effective-range theory to include this case
was given some time ago.!> More significantly, for a
repulsive potential which is everywhere proportional to
1/7%, a phase shift does exist but is energy independent
so that for all positive %, and for all L,

B2+ cotn(L) =C(L)k2EH, (1.3)

Equation (1.3) is an identity, not the leading term of
an expansion, and is clearly not of the form of Eq. (1.2).

Now for small energies the effective potentials of
atomic physics do not fall off faster than any power of
1/r. Thus, the interaction with a neutral molecule
(we assume it doesn’t have a quadrupole moment) of an
ion of charge Ze and of sufficiently small energy behaves
asymptotically as

V(r) > —1Z%%/r* forr— w, (1.4)

where « is the molecular polarizability and r is the
distance between the centers of the ion and of the
molecule. For an electron or positron rather than an
ion, one need merely replace Z%? by e (It is rather
more difficult to justify the adiabatic approximation in
scattering of electrons or positrons by molecules than
in the scattering of ions by molecules, but it is never-
theless, asymptotically,® a valid approximation at
sufficiently low energies.) One then finds for all L>0
that cotn(L) is proportional to k2 and hence that
R+t cotn(L) is proportional to kL' for sufficiently
small values of %2 Thus, even the leading term in the
above expansion, Eq. (1.2), is incorrect for L>0 when
a long-range 1/r* polarization potential is present. The
leading term in % cotn(0) is independent of % for the
polarization potential, as it is for short-range potentials.
The next term, however, is #ot proportional to k2
as we shall see, so that the shape-independent approxi-
mation is not valid even for L=0.

The problem which motivated the present research
is the problem of the scattering of an electron or an
ion by a neutral molecule which hasn’t any permanent
multipole moments. The asymptotic 1/7* dependence
of the effective interaction that is generally assumed
for that case, at low energy, is a consequence of the
adiabatic approximation. Though some doubt has re-
cently been cast on the validity of this approximation,
we believe it to be basically correct. (In the present
paper we need only require that the approximation be
valid beyond some value of 7, which is certainly the
case.) However, in the present paper that question will
not be touched upon. In order to avoid the additional
difficulties that are introduced in the analysis of scatter-
ing by compound systems, (the difficulties are complexi-
ties rather than questions of principle), we will restrict
our attention to the mathematical question of the ap-
propriate form of effective-range theory for scattering
by a static central potential which obeys the usual re-

8 Castillejo, Percival, and Seaton, Proc. Roy. Soc. (London)
A254, 259 (1960).
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quirements for small values of r and which approaches
—3Z%%/r* for large r. Applications to physically in-
teresting problems will be considered in a subsequent
paper.

Section 2 will consider the origin of the breakdown of
the expansion of k2L*1 coty(L) as a power series in k2
for long-range potentials. The rest of the paper is
primarily concerned with the polarization potential
which goes asymptotically as a multiple of 1/74 In
Sec. 3, we consider in some detail the solutions of a
Schrodinger equation with a potential which is every-
where proportional to 1/7%. These solutions play the
same role as do the free solutions in the usual formula-
tion of effective-range theory. The subsequent sections
develop expansions of k2! coty(L) about E=0, and,
for L=0, about the energy of a bound state.

2. BREAKDOWN OF POWER SERIES EXPANSION OF
kL4 cotny(L) FOR LONG RANGE POTENTIALS

A. Conditions for Existence of 4(L)

Before proceeding to an analysis of the long-range
1/7* polarization potential which is our primary concern,
we will attempt to obtain some insight into the general
question of the origin of the breakdown of the expansion
of k21 cotn (L) as a power series in k2.

The wave function #(r) to be determined is defined
by the Schrédinger equation

[ ’ -l—kz—ﬂlﬂ—%V(r)]u(r)———O, (2.1)

dr? 72

and by the appropriate boundary conditions. For
short-range potentials, V(r) can be neglected entirely
for large r and u(r) must there approach a linear
combination of the free solutions; we can, therefore,
impose the boundary conditions

u(0)=0, u(r)— kL cotn(L)krjL(kr)—krn.(kr)]

for r— oo,

(2.2)

For k=0, u,(r) should approach a linear combination
of the =0 free solutions, #“*! and L. If in Eq. (2.2)
we let £ — 0, and if further we use

lim B2EH cotn(L)=—1/A(L), (2.3)
k—0

we do in fact find that for » — « we have such a linear
combination, namely,

so(r) — QL—1) Wy L—g It/ 2L4+1) 1A (L) ],
where
QL-1)!=1X1X3X - (2L~-1),
QL+ N=1X3X5X---(2L+1).

We of course also have %((0)=0. The terms which
were dropped in Egs. (2.2) and (2.4) are terms which
fall off with # faster than any power of 1/7.

(2.4)
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For long-range potentials, however, uy(r) will not
have the asymptotic form specified by Eq. (2.4); there
are additional terms which fall off as powers of 1/r
and which may in fact dominate over the r~I term.
These additional terms have their origin in the fact
that one cannot entirely neglect a long-range potential
no matter how large one chooses 7. To prove this, we
note that the Schrodinger equation for angular momen-
tum L with

@u/B)V (r)=—Ba?/r"
has as its two independent solutions
et/ (®) and  Neriyi o (@),

where J and N are cylindrical Bessel and Neumann
functions, respectively, and

=28 ¥/ (p—=2),

From the asymptotic forms of these solutions, it
follows that the leading terms in the asymptotic form
of uo(r) are, for n>2L+3, r™! and L, just as for a
short-range potential; one then obtains the usual
energy dependence 5(L) - constk?itl for k— 0. If,
however, n<2L+4-3, the leading terms in the asymp-
totic form of #y(r) are X+ and rZ—+3, which is not of
the usual form, since the latter term dominates the
usual 7~ term. One does not then have n(L) — const
kL1 for k— 0; that is, A(L) as defined by Eq. (2.3)
does not exist. For n=2L-3, the leading terms in the
asymptotic form of #o(r) are 7! and % Inz, and once
again A(L) as defined by Eq. (2.3) does not exist. In
this last case, incidentally, one has in the Born approxi-
mation that (L) — constk?**! Ink, and not simply the
k2! dependence that has been given in the literature.
In the above limiting forms for (L) we have ignored
multiples of .

A quite different proof of the fact that A(L) as
defined by Eq. (2.3) does not always exist follows from
the variational expression for A(L) which, in the
present notation, takes the form

AL~ A(L)—[ L+

> f u,(r)[ z —M—&V(r)]ut(r)dr, (2.5)

;; 72 #?

where the trial function #, here satisfies the boundary
conditions

%, (0)=0, u,(r)>—rit 4 (2L+1)11Q2QL—1)114,(L)/rL.

If A (L) does exist, the variational expression, Eq. (2.5),
should give a value arbitrarily close to A(L) for
sufficiently accurate trial functions #%,, However, for
any u; which has the above asymptotic form, the inte-
grand in Eq. (2.5) approaches (—2u/A2)V (r)r2lt2 It
follows that if —(2u/A2)V (r) — B.2/r* for large 7, the
integral is infinite if 2L+2—#2 —1. For such values of
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»n and L, then, 4 (L), as defined by Eq. (2.3), does not
exist, in agreement with the conclusion arrived at above.
Recently, a number of authors”® have applied the
Born approximation to determine the low-energy
behavior of the phase shift for scattering by long-range
potentials. To justify this procedure, it is usually
stated that due to the presence of the centrifugal
barrier, the low-energy scattering is determined only by
the asymptotic form of V' (r), where V (r) is very weak,
the contribution to tany from zero to any finite value
of r going to zero as k?.+% One might then expect that,
for L sufficiently large, the Born approximation will not
only give the correct £ dependence of the leading term
in the expansion of tann for small %, but will also give
the correct coefficient of that term. One can go even
further. It is almost certainly true that the leading
terms in the Born expansion, where only the long-range
part of V(r) need be taken into account, will give
exact results for all terms up to but not including the
term in k2L+L, (It should not be difficult to prove this
but we have not attempted to do so.) The above
expectation is strengthened by the results of the present
paper which show by an entirely different approach
that this expectation is verified for the particular case
n=4. (Actually, the present paper includes the form of
the energy dependence for all terms through #21+3.)

B. Conditions for Existence of r,

If A(L) does not exist, the question of the existence
of ro(L) as defined by Eq. (1.2) does not arise. If 4(L)
does exist, we must still examine the conditions under
which 7,(L) will also exist. We will restrict ourselves to
the case L=0 and to n=4. (It should not be very
difficult to do the same for L>0.) To analyze the
existence conditions, it will be useful to very briefly
review effective-range theory for short-range potentials.
Of the derivations of the theory that have been given,!:?
that of Bethe will be most convenient for our present
purposes.

Since we are concerned with L=0, our boundary
conditions, Egs. (2.2) and (2.4), become

#(0)=0, wu(r) — coty(0) sinkr-+coskr,
%(0)=0, uo(r) —1—r/A.

We also introduce the solutions of the free Schridinger
equation, with wave numbers & and 0, to be denoted by
v(r) and vo(r), respectively, with normalizations chosen
so that they asymptotically approach (r) and w#o(r),
respectively. We then have, for all 7,

v(r)=coty(0) sinkr+coskr, (2.6)
vo(r)=1—r/A. 2.7

"E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955); B. H.
Bransden, A. Dalgarno, T. L. John, and M. J. Seaton, Proc. Phys.
Soc. (London) 71, 877 (1958).

8R. M. Thaler, Phys. Rev. 114, 827 (1959).

9 L. M. Delves, Nuclear Phys. (to be published).

(2.2)!
(2.4)
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One can then readily derive the identity
k cotn(0)= — (1/4)+#2 f (wwo—nmo)dr. (2.8)
0

At this stage, an approximation is made. It is argued
that if V(r) effectively vanishes for r>R, then v is
effectively equal to # and v, to %, for > R, so that the
integrand is non-negligible only in the region 0 to R.
It follows that for #2k2/(2u) small compared to some
average value ¥ of V() in the region 0 to R, one can,
with an error of the order of k2%2/(2uV), replace v
by %o and % by u, in the integrand. We thereby obtain
the shape-independent approximation, Eq. (1.2), with
an error which is presumbaly proportional to &% The
energy-independent effective range 7o is then defined by

o0
Lre= f (v —ue?)dr.
0

We have already seen that the shape-independent
approximation is totally wrong for a repulsive potential
equal to a multiple of 1/72. The origin of the error is
there clear; a solution #¢(r) which satisfies the boundary
conditions given by Eq. (2.4)" does not exist, so that
one cannot actually derive the indentity Eq. (2.8) for
this case. For potentials which fall off at least as
rapidly as 1/74, the identity Eq. (2.8) 45 valid. For those
cases for which 7, does not exist, the origin of the diffi-
culty must then lie in the subsequent approximations
which were made in arriving at Eq. (1.2). The root of the
trouble is that the asymptotic form of #o(r) contains
terms in 7, 7%, and r~—* (we have n=4), while v4(r)
contains only the r and #° terms. Since vy2—u,? will then
contain a term of the form 1/r"4 it follows that the
integral which defines 7, is infinite for n=4 or 5, that is,
that 7o does not exist for =4 or 5.

For the case of primary interest, V(r) — —3$Z2%?%/r%,
one has, for example,

uo(r) — (r/B) sin(B/r)— (r/4) cos(8/)
=1—7/A+38%/(4r)—B/(6r)+ - - -

for r — o, where
B*= (2u/h%) (32%).

Since vo(r)=1—r/4 for all r, we have that while

(2.9)

(2.10)

o«

f (vvo— nuo)dr
0

is a finite number, the integral which presumably
approximates it, namely,

f (v —u)dr,
0

is infinite.
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For those cases for which 7o is infinite, the point
then is that while »(r) approaches #y(r) for r — o in
the sense that the difference goes to zero, it does not
approach it rapidly enough, and there is no point
beyond which the effect of the long-range potential
can be neglected. In fact, returning to the case of
arbitrary L, there will for any finite » be some term at
which the expansion of k2X+! cotn(L) as a power series
in %2 will break down. On the other hand, if V(r) — 0
for » — « more rapidly than any power of 1/r, then
99(r) —uo(r) — 0 for r — o more rapidly than any
power of 1/ and the expansion will exist for all L.

3. MATHEMATICAL SOLUTIONS OF SCHRODINGER
EQUATION WITH r—* TERM

In preparation for the derivation of an effective-range
formula for a potential which approaches a multiple
of 1/r* for large r, we seek two independent solutions
of the differential equation

& LL+1) g
[-—-———(——I_—)+~ﬁ:+k2]M(r)=0.

dr? r?

(3.1)

Since we have allowed the term 82/7* to extend all the
way in to the origin, we cannot expect either of the two
solutions to be a physically acceptable wave function;
they will turn out to have a derivative at the origin
whose value is not well defined. There cannot be any
objection to such a procedure, however, since the
solutions are not supposed to represent any physical
situation but rather are simply useful mathematical
constructs.

One could of course avoid the question by introducing
an alternate differential equation in which the 1/
term is cut off at some small value of r. This would have
the further advantage that this potential would corre-
spond more closely to the true potential. On the other
hand, it complicates the mathematics, and since the
introduction of Eq. (3.1) does not lead to any difficulties,
we prefer to use that approach.

Following Vogt and Wannier,!® we introduce the new
variable ¥ and the new function ¢ (V) through

r=(8/k)te¥ (3.2)
and
M(r)=ri¢p(¥). (3.3)
¢(Y) then satisfies the Mathieu equation,
[(d%/dY*) — (L+%3)*+2B8k cosh(2Y)Jp(¥)=0; (3.4)

the properties of the solutions of this equation are

10 E. Vogt and G. H. Wannier, Phys. Rev. 95, 1190 (1954).
Though we have made no use of their results beyond the basic
result that one can convert the Schrédinger equation with a 1/r*
term into a Mathieu equation, it may be useful to record the
connection between their parameters and ours, namely,

B=p—L, coswy= (1+mﬂ)/(2m))
et=(—~1)2(1—m?)/(2m sinyr).
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rather well known.!! Reverting to the coordinate r, the
two independent solutions can be taken to be

M0 =M, {In[ (8/k)~*]}, (3.5)
where, to lowest orders in 8%, one has!?
v (L+3)— BR)YAL+HHE+HEL-3] 3.6)

It will also be convenient to introduce the quantities
m=M,"(0)/M_,(0) 3.7
and
B~ -/
[BIL+HL+H(L—-D]

b=3m(v—L—

(3.8
m can be expanded as

m=(3Bk)’[T(1—»)/T(1+»)]
X[14+CBR+-Co8R -+ -], (3.9)

where C, and C, follow from an analysis of Egs. (2.6-22)

and (2.2-38) of reference 11, and where T is the gamma

function. Theleading term of Eq. (3.9) is given explicitly

by

m=(—1LQ2L+1) BRI/ [ QL+ T+,
while the next term follows from the relationship
=—Ly/(1—-»)2 (3.11)

For our purposes, it will be convenient to choose as

the two independent solutions

s () =Q[m cosdM _, V4 (—1)L(1/m) sindM, V7, (3.12)

and

9o (r) =Q[m sindM _, V4 (— 1)E(1/m) cosM, V], (3.13)

where

(3.10)

Q= (3n/B)%*/cos28. (3.19)

The subscript p refers to the fact that the differential
equation under consideration contains the polarization
potential. The subscripts s and ¢ are suggested by the
sine and cosine dependence of the functions for suffi-
ciently small r. Thus, it follows from the known proper-
ties of the M, that

vpa(r)~sin[ (8/r)—3Lx )/ (B/7), r<K(B/k)*,

pe(r)~cos (8/7) = 3Lx Y/ (B/1), 1<(B/R).

For large r, we have
(=Dm
(Bk)* cos26

sin?

Vs (1)~ [cos(kr— iLw) (cosZB————

~+sin(kr— 3 L) sind cosd ( —_— 1)],
m2

r>(B/k)t (3.15)

1 J. Meixner and F. W. Schafke, Die Grundlehren der M athemati-
sohen7Wissenschaften (Springer-Verlag, Berlin, Germany, 1954),
Vol. 71.

12 The higher terms in the expansion of » can be obtained from
the expansion of cosyr given by Meixner and Schafke, reference
11, Eq. (2.2-44). These higher terms will not, however, be required
for our present purposes.
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(—1)Im 1
Ve (7) ~————————[cos(kr— LL7) sind cosB(l ——)
(Bk)} cos2s m?
cos’
~+sin(kr—31 L) ( —sin% ) ],
m2

r>(B/k)}. (3.16)
As for short-range potentlals, the two mdependent
solutions have been chosen in such a way%as to make
their behavior for small 7 relatively simple. There
is no need to choose solutions which have a simple
behavior at large r since the #(r) and v(r) are chosen
to approach one another at large r and one never
actually has to perform calculations with the functions
at large r.

4. MODIFIED EFFECTIVE-RANGE EXPANSION

In our analysis of Eq. (2.1) for short-range potentials,
we took %(r) at large r to be a linear combination of the
two solutions of that equation with V(r) neglected,
i.e., krjr(kr) and krnp(kr). The relative amplitude of
these two terms, which is fixed by the requirement
that the continuation of #(r) must vanish at r=0,
determines the phase shift. We are now however
concerned with a long-range potential such that

AV(N=V 1)+ &/ 2u)8%/r* (4.1)

vanishes as r — « more rapidly than any power of 1/7.
A modified approach must then be used if we are to
obtain the equivalent of an effective-range expansion,
for we have seen that 7, as normally defined does not
exist. We rewrite our differential equation as

@ L(L+1) £ 2u
[ + —AV(r)+k2]u(r) =0,
dr? 72 2

Since AV (r) is a short-range potential, we can neglect
it at large 7, and write #(r) as a linear combination of
the solutions of the resultant equation, namely, v,,
and v,.. The relative amplitude, which we will denote
by B, can readily be related to tany(L).

Thus, we solve the differential equation, Eq. (2.1),
subject to the boundary conditions

u(0)=0, u(r) — 1,,(r)+ Boyo(7).

Once B has been found, tann(L) is determined, since
inserting the asymptotic forms of »,, and v,, and
comparing with the usual asymptotic form %(r) — const
Xsin[kr—3Lx+9(L)], one finds

(4.2)

—tan?%+B tand (m?—1)
tanp(L)= . (4.3)
tand(1—m?)+ B(1—m? tan%)

For the development of a modified effective-range
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theory, it is useful to define
2 (7) =5 () 4+ Buypo(r) (4.4)

for all . We then let #;(r) and u;(r) be solutions of
Eq. (2.1) for energies E; and E, respectively, and
9p1(r) and v,(r) be the corresponding solutions of
Eq. (3.1); all four solutions satisfy the appropriate
boundary conditions. Proceeding then in a fashion
almost identical with that used by Bethe,? we find

b b
= (k12—k22)f ulugdr,

(ulu2, - uzull)

a

(4.5)

b

b
= (k?—k?) f V105207,

(951092 — Vp2¥p1")

where ¢ and b are arbitrary. Subtracting, letting a —0
and & — o, and using the specified forms of the various
functions and their derivatives for very small and for
very large values of 7, we obtain

(BZ/.B) - (Bl/ﬁ) = (kzz'— k12)f (‘ZJpg‘ZJpl"" ugul)dr. (46)

Eq. (4.6) is valid for all L. The situation in the present
case is then in this regard simpler than for a short-
range potential, where the derivation of an effective-
range expansion is rather different for L>0 than for
L=0, the difference arising due to the presence of the
L(L+1)/r* terms which give rise to difficulties at
r=0 for L>0. For our present long-range potential,
the 1/7* term dominates the L{L--1)/7% for r—0
for all L, so one need not distinguish between L=0 and
L>0. Note that the identity Eq. (4.6) reduces for
L=0 to that deduced by Bethe for 8 — 0. That it
does so follows from the observation that B/8—k
cotn(0) for 3 — 0.

The long-range polarization effects having been
accounted for, the difference between v, and #;, or
between 7,2 and u,, falls off faster than any power of
1/r. It was precisely because the difference between
and #, or between v, and %, did not fall off faster than
any power of 1/r, for the conventional form for v, or
for vs, that the effective-range expansion for k2L+!
Xcotn(L) broke down. We do however have a valid
effective-range expansion for B/B.

5. EXPANSION ABOUT ZERO ENERGY

We specialize now at the case for which E;=0.
Denoting the corresponding quantities by the subscript
0, we then have

vp0(r)= j1(B/7) — Bonr(8/7). (5.1
When the subscript 2 is dropped, Eq. (4.6) becomes
(B/B)= (Bo/B)+32p5(0,E)E?, (5.2)
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where

10p(0,E)= f CeR—— (5.3)
0

Thus far, all of our equations are exact. We now write!

(B/B)~ (Bo/B) 431 mk?, (5.4)

where

3r00=30,(0,0) = f oui—uddr,  (55)
0

and where the error involves a term of order %%, the
relative error being of the order of (h%k%/2y)/ V; here
V is some average value of V(r) taken over the range
of the short-range potential.

From Eq. (4.3) we find that

lim (tany(0)/k)=—A=8/B,.
k=0 (5.6)

By using Eqgs. (2.3), (3.8), (3.9), and (4.3), Eq. (5.4)
can be written, to terms in £% as

k cotn(0)
1 =
=——+—k+——k2ln( )
A 342
+[1 L8, 208 208 86 () 6 1r264]k
7o T3a\2) T3 on
+..., G

where

¥(3)=T"(3)/T(3)=0.0365.
The expansion for tann(0) is slightly simpler in form.
We have given the expansion for % cotn(0) simply
because that is the conventional form.

It is well known that % cotn(0) must be an even
function of & for real k. This property does not depend
upon any special properties of V(r), contrary to the
situation when one is attempting to prove the analytic-
ity of % cotn(0). Despite the appearance of Eq. (5.7),
k cotn(0) 4s in fact an even function of k. The point is
that for & real and negative, one must utilize an alternate
asymptotic expansion of the Mathieu functions, and
it is found that in Eq. (5.7) % must everywhere be
replaced by —&.

For a potential V(r) for which AV (r) as defined by
Eq. (4.1) vanishes more rapidly than any power of
1/r, as we have assumed, one could obtain the coefficient
of %* in the expansion of % coty(0) without introducing

18 Equation (5.4) is identical in form with the usual expansion
for k¥.*lcotn(L), v, having been chosen to accomplish this.
Equation (4.3) is_then rather more complicated in form than it
might otherwise be.

14 The alternate asymptotic expansion of the Mathieu function
follows from the realization (see reference 11) that M,® approaches
J,, and that there are different asymptotic expansions of J,
depending upon which sector of the complex plane the argument
of J, lies in.
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any new parameters; the coefficient is in fact independ-
ent of 7, and can be expressed in terms of 4 and 8.
In most cases of interest, however, AV (r) will have
additional terms that vanish as d/7%, and the coefficient
will then depend upon d as well. We have, therefore, not
calculated the %3 term. We will not here go into this
point any further.

The term linear in % in Eq. (5.7) has previously been
found by Thaler® in a Born approximation analysis of
the effect of the polarizability of the neutron on the
scattering of neutrons by nuclei with large Z.

For L>0, Eq. (4.3) leads to

(2LA-1)2(BR)+
[(2L+1)!]*B,

[This equation is in fact valid for L=0 as well, but
for that case we have gone well beyond this result in
Eq. (5.7).] Higher-order terms in the expansion of §,
[see Eq. (3.8)], can be obtained. The expansion of
tann(L) up through terms not including £24+! can then
be expressed in terms of 8 alone, while the expansion
including the k%2+! term involves in addition only B.
The %2+ term is of course the leading term for short-
range potentials.

It should be noted that the techniques previously'®
introduced for short-range potentials for the determina-
tion of rigorous upper bounds on A4 (L) can readily be
adapted to determine rigorous upper bounds on —1/B,.
One would use the normalization

uo(r) — n1.(8/r)— (1/Bo) j(B/7).

Returning to Eq. (5.8), the leading term in the ex-
pansion is given by

tany(L) = {x8*/[8(L+5) (L+3)(L—3) &+ --. (5.9)

That (L) is proportional to %2 and not to 22Xt for &
sufficiently small and L>0 has previously been shown
to be true in the Born approximation.”® Thaler in
fact found the above coefficient for L=1 and L=2.1

It might be noted that to lowest order in &, the total
cross section is now given by the expression

o=4rA*+ (8/3)n*B2Ak+-- - -.

We have throughout the paper expressed all expan-
sions in terms of B8, By, and 740. In many ways, it would
be preferable to determine the expansion in terms of
By, 730, and the various quantities connected with the
Mathieu solutions, such as », m, and 8, without expand-
ing these latter quantities as power series in &2, since
these quantities are rather delicate functions of k.
For a polarizability numerically equal to that of a
hydrogen atom, the expansions break down in the

tang(L)= —tand+ +---. (5.8)

16,. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959);
117, 1095 (1960) and L. Rosenberg, L. Spruch, and T. F. O’Malley,
ibid. 118, 184 (1960).

16 Thaler’s expression (reference 8) for arbitrary L is correct
only for L=1 and for L=2,
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neighborhood of 1.5 ev. For scattering by a compound
system, where one is dealing with a partial differential
equation, it would be perfectly reasonable to determine
the quantities », m, and 8, which are defined by an
ordinary differential equation, numerically, and to
proceed from there. With this point of view, the
potential which goes as 1/7* is no simpler than other
long-range potentials.

The limitation to energies below about 1.5 ev, for @
equal to that of a hydrogen atom, might seem to be
severe. On the other hand, this is easily the energy
interval most difficult to study, both theoretically and
experimentally. Furthermore, the adiabatic approxima-
tion on which the 1/7* potential is based cannot be
valid over a significant region of r at any but very low
energies, though precisely how low is not really known.
Thus, it does not seem worthwhile to seek alternate
expansions of », m, and § which are valid for higher
energies, even though they must exist, or even to seek
numerical values of », m, and & in the higher-energy
range.

6. EXPANSION ABOUT ENERGY OF
BOUND STATE

If there exists a bound state of angular momentum L
with energy E,=—#%%?*/(2p) which is very small and
which is known, it is well known in the usual effective-
range theory that it is often more convenient to expand
about E=E, rather than about E=0. The same is
true for the present case of a long-range potential,
though here we will be concerned initially with the
expansion of B and only then with the expansion of
cotn(L).

Thus, while Eq. (4.6) was derived for two non-
negative energies, it remains valid when one of the
energies is negative, and when both of the energies are
negative. The point is that the expressions for the
Mathieu functions that were used in the derivation of
Eq. (4.6) are valid not simply for % real and positive
but rather in the sector —w<argk<w. (We make
specific note of the fact that the expressions are nof
valid for % real and negative. This point was critical
in the proof that (L) is an odd function of £.) Equation
(4.6) can then be written as

(B/B)= (B./8)+ (k+) f Oty t)dr. (6.1)

Proceeding in a fashion identical to that used at zero
energy, this identity can be approximated by

(B/B) = (B4+/B)+3pp (K477, (6.2)

where the energy-independent effective range ppy is
defined by

Yopy= f (= 102)dr. 6.3)
0

One advantage of the present expansion about E=E,
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over the expansion about E=0 is that whereas By
depended upon V(r) for small r in a detailed way,
B, follows immediately simply from a knowledge of
E,, and E, will often be known experimentally. Thus
the requirement that the bound state function behave
asymptotically like ¢ leads [see Eqgs. (3.15), (3.16),
and (4.2), replacing k& by 7v] to the expression

im,2e*®r—tans,

By=——r——,
1+im, %% tansd,

(6.4)

where m, and 8, are to be evaluated at E=E,.7
Specializing now to the particularly important case of
L=0, we have

8,=—1rBy24-.. for L=0 (6.5)
and .
im,2e*%r=0By+0(y*Iny) for L=0 (6.6)
so that, to terms in v?,
By~ —By+inB%y?, for L=0. (6.7)

From Egs. (3.8), (3.11), (4.3), (6.2), and (6.7), one then
finds

k cotn(0) =~ —y+ (3pp+imB) (v*+5%).  (6.8)

Equation (6.8) differs from the usual expansion in
that it contains 1p,,~+3n8 rather than 1p,. We will
now show that to the order to which we are working,
these two expressions are the same.

Thus, consider the function v,,» which is defined by
the same differential equation and boundary conditions
which determine v,, except that v is replaced by v’
(We do not assume the existence of a bound state with
energy (4%/2u)y'2.) By manipulating the two differential
equations for v,, and v,,» we obtain, in the usual way,

0

o0
(=" f VoV py @1 = (Vpr Uy’ — Uy Upy”)
0 0

=—(1/8)(By—By).

If we let v’ approach v, the desired integral may be
written

® 1dB, 1dB, 1 1
f Yyt = —— —= —— —— . ———7f3,
0 Bdvt 28vydy 2v 3

It follows that

Yom~1/(2y)—brs— f widr.  (6.9)
0

On the other hand, since »,=exp(—vr), we have

30y= f (vl —u)dr=1/(2v)— f w%ﬁdf- (6.10)

17 The replacement of 2 by 4v is permissible because, as noted
previously, the Mathieu functions that we have used are valid
for ~m<argk<w; the question of the analyticity of % cotn(L),
for example, does not arise. Equation (6.4), incidentally, is
formally equivalent to replacing tann(L) by i in Eq. (4.3).
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Equation (6.8) can therefore be written as

k coty(0) = —y+3py (v*+57). (6.11)
Thus, to order 4%, the formulation which explicitly
takes into account the long-range character of the
potential leads to precisely the same result as the
usual formulation utilized in application to short-range
potentials. This conclusion must still, of course, be
verified for scattering by a compound system when
identical particles are involved. Furthermore, even if
the ordinary shape-independent formula is wvalid in
this case, it is very unlikely that the error term is of
order k¢ since in the one-body problem one does find
lower-order corrections. With these qualifications, our
results then justify the very nice use which has been
made of Eq. (6.11) in the analysis of low-energy singlet
scattering of electrons by hydrogen atoms,'® and makes
less surprising the good agreement obtained between
the singlet scattering length thereby obtained and that
determined on the basis of a rigorous minimum
principle.”® (On the other hand, the good agreement does
not guarantee that the results are accurate.)

It is of interest to inquire into the absence of a term
linear in % (as well as a number of other terms) in the
present expansion about E=E, as contrasted to the
situation for the expansion about E=0. This can be
discussed in a number of ways. On the one hand, we
saw that the integral which defined po did not even
exist, due to the difference in the asymptotic behavior
of v and of u,; while v, and «, also have a different
asymptotic behavior, they are both now dominated by
the factor e, so that fu,%dr and fu,’dr exist sep-
arately, and hence so does p,. More physically, one can
understand the difference in the following way. In the
expansion about E=0, no assumption whatever was
made about the magnitude of 4 and only terms in %3
were neglected. The expansion about E=E, assumes
however that E, and hence v is small, and terms in 3
v%k, and vk? were neglected, as well as terms in 3.
Now it follows from a comparison of the two expansions
of k coty(0), about E=0 and about E=E,, that 1/4
is small if  is small. (In fact, 1/4 =~+v.) If in Eq. (5.7)
we drop terms in 1/43, in (k/A?), and in (k?/4), which
are now on the same footing as 3 terms, we remain with

k cotn(0) ~ —1/A+ (3rpo+imB)R*

which is just an expansion of the usual form in that it
contains a constant and a term in 2. On the other hand,
no matter how small 1/4 is, there will always be an
interval in the neighborhood of £=0, a very small
interval to be sure, for which the term linear in & will
be more important than the term in %2

18T. Ohmura, Y. Hara, and T. Yamanouchi, Progr. Theoret.
Phys. (Kyoto) 22, 152 (1959); 20, 80 (1958); T. Ohmura and
H. Ohmura, Phys. Rev. 118, 154 (1960).

¥ L, Rosenberg, L. Spruch, and T. F. O’Malley, Phys. Rev. 119,
164 (1960).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 2, NUMBER 4

JULY-AUGUST, 1961

Transition Matrix for Nucleon-Nucleon Scattering*

K. L. Kowaiskt AND D. FELDMAN
Department of Physics, Brown University, Providence, Rhode Island
(Received December 22, 1960)

As part of a study of the influence of ofi-the-energy-shell effects on the optical potential for nucleon-
nucleus scattering, a method is presented for the calculation, via the reactance matrix, of the nucleon-nucleon
transition matrix in terms of an internucleon potential and the scattering amplitude. The singular integral
equations for the partial-wave amplitudes of the reactance matrix are reduced to a Fredholm form which
contains the scattering amplitude parametrically. The iteration solution of these Fredholm equations is
shown to be generally unreliable; however, the zeroth-order iteration approximates the exact solution quite
well near the energy shell. The replacement of the kernels of these integral equations by separable functions
is discussed ; the validity of such an approximation is illustrated by a simple example. The requirement that
the solutions of the (exact) Fredholm equations be consistent with the original singular integral equations
yields a solution for the scattering amplitude in terms of the resolvent kernels of the Fredholm equations.
The entire formalism is so constructed as to include the possibility of a hard core being present in the

nucleon-nucleon interaction.

INTRODUCTION

OST contemporary investigations of the scatter-

ing of high-energy nucleons by nuclei formulate

the many-body scattering problem in terms of two-

body processes'; that is, the complete many-body

transition matrix is expressed in terms of the two-body

transition matrices. Thus, the problem is viewed as a

series of processes between the incident nucleon and

each one of the bound nucleons. In this case, the usual

two-body kinematics are modified by the fact that one
particle is bound.

A customary approximation in these studies has been
to neglect the struck particle’s initial energy in the
laboratory system as compared with the energy of
the incident particle in the same reference frame. It is
then usual to regard the two-body process as one occur-
ring between two free nucleons.”* Since the OES values?
of the two-body transition matrices can, to some
extent, be determined experimentally,* the many-body
scattering problem can then be investigated phenom-
enologically in a well-defined way.

It may be expected that FES processes will have to
be taken into account in order to extend the usefulness
of the various scattering formalisms to larger scattering
angles and a wider range of energies.®® To accomplish
this, a knowledge of the FES characteristics of the
two-nucleon transition matrix is obviously needed. It
is the intent of the present study to provide a relatively
useful method for obtaining this information.

At the present time, the most convenient way to

* This work was supported, in part, by the U. S. Atomic
Energy Commission.

1 A. Kerman, H. McManus, and R. M. Thaler, Ann. Phys. 8,
551 (1959), and works cited therein.

2 This last step is exact only for forward scattering.

3 A process between states of unequal energy will be referred
to as off-the-energy shell (FES) and one between states equal in
energy as on-the-energy shell (OES).

4Cf. H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys.
Rev. 105, 302 (195%; H. P. Stapp, U. S. Atomic Energy Commis-
sion Rept. UCRL 3098 (1955).

8 T, Fulton and P. Schwed, Phys. Rev. 115, 973 (1959).

8 H. Feshbach, Ann. Rev. Nuclear Sci. 8, 49 (1958).

investigate the FES properties of the two-nucleon
transition matrix is by means of an internucleon
potential. Since at least two nucleon-nucleon potentials
exist which reproduce the two-body data reasonably
well up to about 300 Mev,”® such an approach has a
fairly secure foundation phenomenologically. Indeed, an
investigation of FES effects in many-body scattering
problems could conceivably produce another means of
checking the validity of a particular potential.

Once a particular potential is assumed, all the
properties of the nucleon-nucleon transition matrix can
be calculated. Such a direct approach of course requires
considerable effort. However, if the OES properties are
regarded as known, the potential can be used merely to
describe the virtual or FES properties of the two-body
scattering. Thus the OES values of this matrix are
simply regarded as numerical parameters. Then it may
be possible to obtain the remaining information about
the transition matrix in a less involved manner than
in an analysis where nothing is assumed known except
the potential. '

In order to utilize the information for OES scatter-
ings, it is convenient to consider the integral equation
for the transition matrix rather than to proceed through
the intermediate step of calculating a wave function.
There exist, however, two formal difficulties in this
approach. The first arises because of the possibility of
the potential containing a hard-core singularity.”? In
this case, the usual form of the integral equation is
meaningless.’® In Sec. I, the integral equations appro-
priate to the case when the potential contains a hard-
core singularity are developed for the various quantities
which occur in scattering theory.

The second difficulty is a result of the fact that the
pertinent imfegral equation is singular in general,

(I;SJi)L’ Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337
3 P. S, Signell and R. E. Marshak, Phys. Rev. 109, 1229 (1958).
9 P. S. Signell, R. Zinn, and R. E. Marshak, Phys. Rev. Letters
1, 416 (1958); R. A. Bryan, Nuovo cimento 16, 895 (1960).
0H. Feshbach, Ann. Phys. 5, 357 (1958).
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Because of this, it is difficult to formulate a well-defined
approximation procedure. After a partial-wave reduc-
tion is performed in Sec. II, the angle-independent
singular integral equations are reduced to Fredholm
form in Sec. ITI. This is done in such a way as to
incorporate parametrically the OES values of the
transition matrix into the general solution.

The solution of the Fredholm equations is discussed
in Sec. IV, Under certain conditions, it is found that
the solutions of these equations can be approximated by
finite expressions which involve the matrix elements of
the potential and the OES values of the transition
matrix. Finally, the consequences of the requirement of
consistency between the solutions of the Fredholm
equations and the original singular integral equations
are deduced in Sec. V.

In this investigation, electromagnetic effects are
completely neglected. In addition, all processes are
considered to be nonrelativistic.

I. SCATTERING EQUATIONS WITH A
HARD-CORE SINGULARITY

The boundary conditions on the wave function which
are required by the presence of a hard core (h.c.) in
the interaction can be replaced by a singular potential
function.!''* When this replacement is made so as to
have the singularity at the core radius, the procedure is
exact!® for the two-body problem.’? This method of
handling the h.c. will now be applied to the integral
equations of scattering theory. The ultimate result
will be the integral equations for the transition and
reactance matrices, modified so as to include a h.c.
singularity in the interaction; it is this which consti-
tutes the extension of the previously noted investiga-
tions. All considerations will be limited to the case of
two bodies.

Consider the following modification of the Lippmann-
Schwinger integral equation'* corresponding to out-
going waves at infinity and energy E;:

Y =¢,+G:;(V§i™+f), (1.1)

where G; is the propagator (E;—H,+ie)™!, H, is the
free two-particle Hamiltonian (excluding the center-of-
mass motion), and ¢; is the normalized eigenstate of H,
corresponding to an energy E; The interparticle
potential is denoted by V, and f is an arbitrary vector
(in Hilbert space).

Let r denote the relative position vector of the two
particles. The coordinate representatives of V' and f

1K, Huang and C. N. Yang, Phys. Rev. 105, 767 (1952);
R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 1 (1958).

12 R, Abe, Progr. Theoret. Phys. (Kyoto) 19, 699 (1958);
K. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958).

13 That is to say, the boundary conditions are satisfied both
inside the core and at the core radius. In contrast to this, the
point pseudopotential of Huang and Yang (reference 11) satisfies
only the conditions at the core radius.

11 B, Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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will be assumed to have the forms

V(r)=0, [r|<a, (1.2)

=800 T 5 AmPi*(rk),  (13)

=0 m=—1

where A;», and g are constants, and ¥;™(r,k;) denotes
the normalized spherical harmonic which is a function
of the angles of r with respect to a set of coordinate
axes whose polar axis is in the direction of k; The
incident wave vector k; has a magnitude defined by
E;=nk2/2M, where M is the reduced two-particle
mass. In the following, sums over  and =m will always
have the form indicated in Eq. (1.3), unless specified
explicitly to the contrary. Henceforth, the limits of such
sums will not be indicated.

1t is clear, from Egs. (1.1) and (1.3), that ¢ (x)
satisfies the Schrodinger equation, with V(r) as the
interparticle potential, for |r|>a. The constants A\;n
will be chosen so that

¥ (1)=0,

It then remains to determine the required values of
the Azm. To simplify the discussion, the particles will
be assumed to be nonidentical and spinless. The
introduction of spin and statistics will be considered
later and presents no special difficulty.

If use is made of Eq. (1.3), Eq. (1.1) can be written
in the coordinate representation as

1] <a. (1.4)

Y (1) =¢:(1) -l-fdr’Gi(r [ YV (WD (r')

+a? zZ Mmgi(r] @)YV (r k).  (1.5)

Here

AT T
(27!’) 2 ?

_Z(ZH—I* VYO (er L6
= - ;—-— g,(rlr) l(t,r)’ (')

exp[ik, (r—r')]
k2—kytie

17

2ME; Gk YD (Rar), r>7,
glr|r)=—i X{
#? Jilkr) @ (kar"), r<r’,

Ju is the spherical Bessel function, and #4,® is the
spherical Hankel function of the first kind.

If ¥:(r) is expanded in spherical harmonics, it
follows from Eq. (1.5) that the coefficient ¥ ;P (r) of
Y:»(x)k;) in this series has the form

1

= )}jz(krr)+ [arguntrie)

X V(r,)x(/i(-‘-) (l") +02)\zmgz(a l (l),
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where
gn(r|¥)=gi(r|r") ¥ (' k*. (1.9)

The condition (1.4) at |r|=a, when imposed on
Eq. (1.8), determines the constants A;, uniquely.
Then Eq. (1.8) may be written in the form

241N} i(r]a)
o) |69 )

Yin®P (r)= 50,mi’(

bs gi(ala)
+f d"[g1m<r|r'>—gl(’]a)gm<alr'>]
gi(ala)
XV (WD (r). (1.10)

It follows, from Egs. (1.6), (1.7), (1.9), and the last
relation, that the wave function ¥, (r) whose radial
part is given by Eq. (1.10) satisfies the condition (1.4);
it is also a solution of the Schrédinger equation for
|r| >a with the potential V(r). Hence, ¥,P () is the
wave function for the case when the interaction consists
of a h.c. and an ordinary local potential outside the core.
Equation (1.5) can now be written in the form

v =40+ [arit) r'){ V)W ()
+ [ W @ @)

+ri<r'lr")¢;<r">1], (L.11)

where w; and T'; are operators which have the following
coordinate representatives:

0(r'—a) nla|T")
wi@l)=—L 0 5y 8
a iLm gi(ala
8(r'—a)(r'"—a
Iy |y=— P9
a4
Yo (' k) Vo (' ko)*
. (113)

Lm gi(ala)

It then follows from Eq. (1.11) that, when the interac-
tion contains a h.c., Eq. (1.1) has the form

1,/‘(+)=¢i+Gi(U¢’lf/i(+)+Pz¢i)7 (1'14)

where

U.'= (1+wz)V (1.15)

Similar results hold for the case of the incoming-wave
solution ¢,;.

The preceding method can also be carried out with
the standing-wave equation. In the absence of a h.c.
interaction, the standing-wave vector ¢, satisfies the
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integral equation'®
Yi= ¢t GV, (1.16)

where G; is simply P(E;—H;)™! and P denotes the
Cauchy principal value. Now assume that ¥, satisfies
the conditions (1.4) and that V has the form (1.2). Then
¥, satisfies the modified standing-wave equation

vi=o+G(Uni+T.9),
U= (1+a)V.

(1.17)

where
(1.18)

Here @; and T'; are operators which have coordinate
representatives identical to those of w; and I';, respec-
tively, except for the replacement of gi(r|7") by gi(r|7"),
where

r>7,

2M jl (kif’)”l(kfr)y
[ (1.19)

Gilr|r)=—h;X
! n Jitkn)mks’), r<r',

and #; is the spherical Neumann function; also, in the
derivation of (1.19), G.(r|r’) is replaced by

G’,‘(r] r/)=h22(12‘[)3pfdkpexplzikp- (r—r )]

k2—ky?

Equations (1.14) and (1.17) will now be used to
derive the integral equations for the transition ()
and reactance (K) matrices, It is evident from Eg.
(1.14), in the case when the potential V is absent, that
¥iP is simply the h.c. wave function X, :

(1.20)

XiP=¢+GT .. (1.21)
Now define an operator v; such that
Y X P =Tps. (1.22)
Also define a wave matrix 2 by
Yt =Q¢.. (1.23)

Then with the aid of Egs. (1.21) and (1.22), it follows
from Eqgs. (1.14) and (1.23) that

Q=14+GLU+:(1-GU,) 1. (1.24)
The ¢ matrix'® will now be defined as
i=[Ustv:(1-G,U;) Q. (1.25)

Then it follows from Eqs. (1.22) and (1.24) that ¢
satisfies the integral equation

t=U+T+ UGy, (1.26)

In addition, it can be deduced from definition (1.25) in
conjunction with Eq. (1.14) that

(fleldy={f|U Py fIT:]4). (1.27)
It is easily seen from Eq. (1.14) that the scattering
158 M. L. Goldberger, Phys. Rev. 84, 929 (1951).

16 The customary superscript (+) will be left off ¢ since only the ¢
matrix defined with respect to ¢ will be used.
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amplitude will be proportional to the OES matrix
elements of f. Finally, it should be observed that
€ and ¢ take on their customary forms when the h.c.
radius is taken to be zero.

In the usual treatments of scattering theory without
a h.c.,”*1® the matrix elements of ¢ and K are simply the
representatives of the vectors to the right of G; in
the ¢, equation and G, in the ¥, equation, respectively.
It is clear that the preceding definition of ¢ has this
property. Thus, by analogy, the matrix elements of K
will be defined as

1K |=(f| U b+ (f| Tl 4). (1.28)
Then it follows from Eq. (1.17) that
K=UA4T+UGK. (1.29)

In the case of an ordinary interaction, the connection
between ¢ and K is easily derived and is unique if the
solution of the standing-wave equation is unique.!®
This relationship is

t=K—1inK6(E;— H,)t. (1.30)

However, when a h.c. is present, the situation is not so
transparent, as a result of the rather unsymmetrical
structure of the new equations for / and K. Nevertheless,
Eq. (1.30) is true in this case also and under the same
conditions, A proof of this is given in the Appendix,

There now remain the questions of spin and statistics.
These will be examined in a fairly explicit way for the
sake of completeness. Specifically, the two-nucleon
problem will be considered with the interaction assumed
charge independent.

The assumptions of Fermi statistics and of parity
conservation imply with charge independence that
ordinary spin is a good quantum number. In this case
the matrix elements of the interaction potential V
have the form!” :

(FBY | VIiap')=0y, wdsssa(fB1 | V |ien”).  (1.31)

Here S, is the total ordinary-spin quantum number
corresponding to the spin state a. The interaction can
then be written in the form

1
V=3 VIO, (1.32)

T,8=0

where Acr s is the projection operator for a state with
total -spin T" and total ordinary-spin .S. The -spin
dependence of V79 is limited only to 7.

It is consistent with the preceding assumptions to
introduce, into the interaction, hard cores with core
radii a(7,S) which depend only on the total spin
quantum numbers T and S. Let (r,a,u’ | ;") denote the

17 Henceforth, the following notations will be adopted. Latin
indexes refer to momentum states. Unprimed Greek indexes
denote ordinary-spin states and primed Greek indexes the i-spin
states. The spin indexes take on the values —1, 0, 1, and 0’, the
index 0’ referring to singlet states. :
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coordinate representative of the (a,u’) component of
¥:). Then the boundary conditions (1.4) take the form

<r;a7ﬂl {wi(+)>=0) l l‘l S d(T,‘/,Sa). (133)

The method of replacing these boundary conditions by
a singular potential can then be applied to the equations
corresponding to a total spin state characterized by
T and S exactly as in the spin-independent case.

The spin-dependent operators w;, @;, I's, and T'; will
only depend upon the total spin state (7,S). The
coordinate representatives of these operators for a
given total spin state will have the same forms as
Egs. (1.12) and (1.13) except that e is replaced by
the a(7,S) appropriate to the spin state in question.

The integral equations (1.26) and (1.29) for the
operators ¢ and K, respectively, will have the same
form as in the spin-independent case. However, now,
V, wg, s, Ty, and T; will have the spin and isotopic-spin
dependences described above.

The integral equations associated with the matrix
elements of ¢ and K will next be expressed in antisym-
metrized forms. This will be done in an explicit way
for the ¢ equation; an identical procedure will lead to
corresponding results for the K equation.

Let { be an operator which exchanges all the variables
describing the two nucleons and let!®

E=1-—¢.
Then the antisymmetrized ¢ matrix is given by
t=Ep

(1.34)

(1.35)

where the superscript zero denotes the unsymmetrized
quantity.

It follows from the previous remarks concerning the
spin and isotopic-spin dependence of w and T that U
and I can be written in the form of Eq. (1.32). Thus,?

<f75;vl l £U [ %%#')
=6V',u'asﬁvsﬂ<f76;ﬂ,{ U(T“"Sa)e(Tn’;Sa) l%%ﬂ')

=8,,u88p.8.U (k7,8 kqe), (1.36)
where
€(Ty,Sa)=[1— (—1)Tw+SaI1], (1.37)
and II is the space-exchange operator. Similarly,
<f73;"’ [ EP I %ay”’)EBV’ ,n'aﬂ.ar (kf l kq)' (138)

Finally, the assumed form of the interaction implies that
(fyﬁﬂ’l l ¢ i q’a7”’>56"'n ,uaSp,Sa t(kfyﬁ l k?)a)' (1'39)

18 Tt follows from the assumed form of V that ¥ and £ commute.
It is easily shown that w;, &, I';, and I'; also commute with £.

9 The energy index 7 will now be deleted from the interaction
terms. The dependence of these operators on the incident energy
has been established and the value of this energy will always be
clear from the context.

® For simplicity, the dependence on the total spin state (T,S)
has not been indicated explicitly in the definitions (1.36), (1.38),
and (1.39). If it is kept in mind that any equation in which these
quantities occur pertains to a definite total spin state, no confusion
is likely to arise.
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If the unsymmetrized equation (1.26) for # and
Eq. (1.35) are combined and use is made of the results
of the preceding paragraph, then integral equations for
the matrix elements of the antisymmetrized ¢ matrix
can be written in the form?

t(kys,Blkia)= U (k;,8] ko) +88,.0 (k| ki)
U(kfrﬁl km')’)t(km’)’ l ki,a)
Ei—Ep+ie ’

+3 ; f dk, 40)

The equations for the matrix elements of K corre-
sponding to Egs. (1.40) are, with analogous definitions,
K (ky,8] ki) = U (ky,8] ki) +85.oT (k| k)
0(kfyﬁl kP)‘Y)K(kP,Y 1 kiya)

E—E, '

+iy P f dk, (1.41)

Finally, the equations which relate the matrix elements
of ¢ to those of K are

ir
8 ki) = K (ki) = & f dk,K (k78] k)

X3 (Ei—Ep)t(kmv l ki,a)- (142)

Equations (1.41) constitute the set of relations which
will be studied in the remainder of this paper. Direct
consideration of the integral equations (1.40) for ¢ is
cumbersome as a result of the complex propagator.
On the other hand, Egs. (1.41) for K can easily be
reduced to real form; the solutions of the K equations
can then be related to the matrix elements of ¢ by
use of (1.42).

II. PARTIAL-WAVE ANALYSIS

The integral equations (1.41) are not in forms
amenable to solution. As a first step in obtaining more
convenient expressions, a partial-wave analysis of
these equations will be performed. This type of reduc-
tion is useful only if relatively few partial waves are
important in the scattering; however, this is the case
for all energies at which phenomenological nucleon-
nucleon interactions have proved successful.

Let J and S denote the total and spin angular
momentum operators, respectively, for the two-
nucleon system. Also, let 4 be an operator which
conserves J?, 82, and parity, and which is independent
of the orientation of J. The matrix elements of 4 with
respect to the free two-particle states will be written as

A(ky,Blkg,0)=(/8]4]q.e)

1
- f dr exp[—ik, 1A exp[ik, 1] (2.1)
(2m)?

2 The factor of } arises from the fact that g£2=2¢.
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Here, X, is the two-nucleon spin function. The axis of
quantization will always be taken in the direction of k;;
the component of total angular momentum in this
direction is denoted by J; with eigenvalues #M. Until
mentioned to the contrary, only those matrix elements
between triplet states will be considered; the singlet
case will prove to be relatively simple. Finally, the
isotopic spin is neglected since it enters into the
equations of interest in a trivial manner.

Let F ™ denote the eigenfunctions of $?, 2, J?, and
J; for which S=1. The orbital angular momentum
operator is denoted by 1. Then the matrix elements,
Api?, of A will be defined by the equation

07,70 m 48, mad lJ(kf I kq)
= [irju o By AR amiihe). 22

Note that 47 is independent of m—+a.

Equation (2.1) can be written in terms of the 4,7
by expressing ¢y in terms of the F;; and employing
Eq. (2.2).2 One finds

Ak Bl k)= (2/7) T Vi (ko k)*Yomtoabd(k, ko,

iLlU.m

I+1

X ¥ Coi(Im;Ba)Av? (kelky), (2.3)
J=|1—1]
where )
81,0==01,0r—8r_1,2 (2.4)
C'l’l(];m; 67“) = Cl’l(J, m+a) m+a—6, ﬁ)
XCulJ, m+a;ma), (2.5)

and Cj;(J,m;B,a) is the Clebsch-Gordan coefficient.
If A(ks,8|k;a) is expanded in partial waves, viz.,

Aks,8 kie)= zZ AP (k| k)Y (ke k),  (2.6)

then it is apparent from Eq. (2.3) that

AP (k| ki) =0m apA e (ks ks)
Esm,u—BA tBa (kfl ki)'

Consider an integral equation of the form

2.7

U (k8| ki) =V (ks8] ki) +2 fdka(kf,ﬁl kp,v)
v

XU (kpy| ki), (2.8)

where U, V, and W are any operators which satisfy all
the conditions imposed on the operator A. The partial-
wave form of Eq. (2.8) is obtained immediately with
the aid of the relevant forms of Egs. (2.3), (2.6), and
(2.7). Then, if the indicated angular integration is
carried out and the necessary sums performed, it is

2] Blatt and V. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), Appendix A.
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found that
Upb(ks| k)
v+l
=V(ks|k)+(2/m) 2 b1y X Cre(J,a—7;8,7)
¥, J=|l'"—1]

X f Qe W (kg | k) U (ky B, (29)
0

Although Eqgs. (2.9) are obviously angle independent,
their form is still inconvenient since they do not
constitute a closed set. A further reduction can be
accomplished if both sides of Eq. (2.9) are muitiplied by
Cvn(Ja; 0,0)Ci(J,a; a—pB, 8), summed over a and B,
and use is made of Eqgs. (2.3) and (2.7). The application
of the symmetry properties of the Clebsch-Gordan
coefficients then yields the following angle-independent

. ) 1 pe
Kyi7(ks|k)=Uss? (ks ki) +T 57 (ky| ki) +—Pf Ak ,
T Yo

AND D. FELDMAN

form of Eq. (2.8):
Sv [ U7 (kylbi)— Vll”"(kflki)]

=(2/m) 2 31,1152',1"f Ak pky?
v 0

XWud (ks kp)Uvvi? (kp| ki), (2.10)

Equations (1.41) and (1.42) in the triplet case have
the same form as Eq. (2.8) and the operators U, T, K,
and ¢ all satisfy the conditions which were imposed
on the operator 4. The latter fact is evident from the
assumptions which were made on the two-nucleon
potential. Therefore, the integral equation for the
matrix elements of K and the equation which links
the matrix elements of / and K can be put into the form
(2.10). It is then found that??

Uss? (ksl k) Ko7 (k| k) (2.11a)

E—E,

_ _ 1 © dkpk,?
Kiyr,04017 (ke | k) = Ui, 7017 (ke B) F0541, 0010 41,0017 (Br | Bs) +"Pf
T Jo

Ei—E,

XU rar,0417 (ks k) K pir,ra1” (ko B FU 1,517 (ks | k) K gy, a10” (B R:)],  (2.11D)

_ ) 1 pe
Kis1,0-17 (ks k)= Ujgr,a—a? (ks ki) F0521,0-1T 71,517 (ks | ki) +—P f
T Jo

bk,
E—~E,

XU sa1,0417 (ks ko) K g1,0-17 (bp| Bi) U r1,0-17 (kg | k) K 71,517 (kp | B ], (2.11C)

The corresponding forms for Eq. (1.42) can be obtained
by comparison with Eqs. (1.41) and (2.11) and can
be reduced to a set of algebraic equations if the integra-
tion over energy is carried out.

Now the matrix element A¢o of the operator 4
between singlet states can be written as

Avo (ks k)= Ai(ks| k)Y (ks k).  (2.12)
1A

Consider the integral equation (2.8) in the singlet
case. Then, since all the matrix elements have the form
(2.12), the angular variables are easily eliminated and
Eq. (2.8) reduces to

dr \?t p>
Ul(kflki)=Vz(k,[k,~)+(—) f dhphy?
u+1/ J,

XW (ks kp)Ui(kp| k). (2.13)
Thus, in the singlet case, Eq. (1.41) reduces to
_ _ T \}!
Kl(kf,ki)':Ul(kf[ki)+Pl(kf|ki)+(_)
2141
° Ui(ks| bp)Ki(ko| ko)
XPf P Ik Kk | k) (2.14)
0 i Lp

23 It should be remarked that the relation K 41, 717 =K1, 727,
which results from the symmetric character of the S matrix,
holds only on the energy shell.

Also, Eq. (1.42) becomes a single equation which may
be written as an algebraic equation just as in the
triplet case.

III. REDUCTION TO FREDHOLM FORM

The integral equations (2.11) and (2.14) are singular
as a result of the pole in the kernel at ;. It is difficult,
in general, to prescribe 2 method of solution for such
equations as they stand. A standard technique, however,
for the treatment of singular integral equations is to
attempt a reduction to a Fredholm form.?* The usual
methods of solution and approximation can then be
employed.” The reduction of the integral equations for
the K matrices to Fredholm form is the object of this
section.

The basic assumptions which will be made is that the
integral equations (2.11) and (2.14) have solutions for
ky=rk;; also, that these solutions are known.28 In the
latter case, it is possible to perform a reduction which is
much simpler than if this assumption were not true.
Moreover, the solutions for arbitrary %; can then be

2 N. 1. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff, Ltd., Groningen, Holland, 1953).

8 F. Smithies, Integral Equations (Cambridge University Press,
New York, 1958).

26 By Eq. (1.42), this is equivalent to assuming a knowledge of
the scattering amplitude at the energy in question.
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expressed in terms of those for k;==%;. It is just this
form of reduction which is desired.
Consider an integral equation of the form?”

2£(x]2)
P

RGIN=1GlIN+P [ RGI3)ds, G0

where, in general, R(x|y) and f(x|y) will be regarded
as column matrices and £(x|z) as a square matrix.28
Equations (2.11a) and (2.14) each correspond to an
equation of the form (3.1) where the function matrices
are one dimensional. Equations (2.11b) and (2.11c¢) are
two independent sets of two coupled integral equations,
each set corresponding to an equation of the type
(3.1) where £ is a 2X2 matrix and both R and f have
two components.

It will be assumed that f(x[y), £(x|z), and d&(x|2)/dz
are continuous throughout the domain 0< (x,2) < ;
also, that a continuous solution, R(x|y), of (3.1)
exists which vanishes for x — o.?® This behavior for
x— o will be regarded as sufficient to ensure the
existence of the integral

R(xy)
P f E dx.
*=y
The determinant of £(y|y) will be assumed nonzero and
the function R(y|y) will be regarded as known.

Let
T(x|z)=2%(x|2)/ (z+),

h(x|2)=[T (x|2)— T (=|9)]/ (z—).
Then Eq. (3.1) may be written as®

R(z]y)
5=y

(3.2)
and
(3.3)

RGaly) = f=l+TGI 0P [ ——ds

+fh(x[z)R(z|y)dz. 3.4

An expression for the principal-value integral can be
found by setting x=1y in this equation. If this expression
is then substituted into Eq. (3.4), the following
Fredholm form of Eq. (3.1) is obtained:

R(x|y)=[f(x|y)—7(|y)fy|»)]

+r (xR 3)+ f A DR(:|3)dz  (3.5)

27 Henceforth, the limits on all integrals will be assumed to run
from 0 to o, unless indicated explicitly to the contrary.

28 These matrices are assumed to be of finite dimensions, with
ng.rix elements which have a functional dependence on z, ¥,
and 2.

® Most of the results to be derived hold for much weaker
conditions on f and £ and with R a member of a broader class of
functions. The case considered, however, covers many physical
situations.

3 The principal-value symbol is omitted on the second integral
because k(x|z) is continuous at z=1y.
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where
(x|2)=T(x|2)T(y[2), (3.6)
A(x|2)=h(x|2)—7(x|y)h(y]2). (3.7)

The new kernel A(x|2) contains no poles.?
The solution of Eq. (3.5) can be written in the form

R(x]y)= (x| y)R(y|y)+6(x|y), (3.8)

where ¢ and 8 satisfy the integral equations
el =G+ [AGlDelnd, (9
0|y =[fx|n—7@|»fr])]

+fA(x|z)0(z|y)dz. (3.10)

It is clear that
e(y|y)=1, (3.11a)

8(y]y)=0. (3.11b)

The separation of the integral equation for R(x|y)
into two integral equations was done primarily for
clarity. However, under some circumstances this
separation may be convenient for obtaining an approxi-
mate solution. In typical physical situations, the
inhomogeneous term in the 6 equation is small or
zero.® If this term vanishes, and if the solution R(x|v)
is unique, then ¢ must be identically zero. Otherwise,
the fact that the inhomogeneous term is small can be
useful if it is possible to solve Eq. (3.5) by iteration.
The ¢ and § equations can then be iterated separately
with less iterations being needed for 4.

IV. ON THE SOLUTION OF THE
INTEGRAL EQUATIONS

The results of the last section permit the reduction of
the integral equations (2.11) and (2.14) to the Fredholm
form (3.5). Once this is done, all matters of principle
concerning the nature of the solutions of these equations
as well as the applicability of various means of obtaining
approximate solutions are taken care of by the usual
Fredholm theory.2* With this in mind, some techniques
for obtaining solutions will now be investigated.

For the sake of clarity, only equations of the singlet
(uncoupled) type will be considered. The functional
properties which will be assumed or deduced for the
various quantities appearing in the uncoupled equations
are valid for the matrix counterparts of these quantities
which occur in the coupled case. The extension to the

3L This particular reduction apparently does not hold if the de-
terminant of £(y|y) vanishes. However, it is not expected that
this limitation on £(y|y) will be unduly restrictive in physical
applications. In any case, it can be shown that, if the OES matrix
elements R(yly) are treated on the same footing as the FES
matrix elements (i.e., instead of determining R(y|y) experimen-
tally, it too is derived from a potential), then no restriction on
detz(y|y) need be imposed.

# This term is identically zero if no h.c. is present.
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coupled case is then straightforward because of the
formal identity of the uncoupled and coupled equations
as was illustrated in Sec. III.

In the singlet state the interaction potential is
central. Thus the partial-wave amplitudes of the
matrix elements U (k,|k;) and I'(k,|k;) can be written
in the form3®

Uiks| k) =202+ D)7 Pus(ks| ky),  (4.1)
and
Tu(ks| ki)=— QE/kD[(2+1)a—]
XLji(ksa)/m(kia)], (4.2)
where

ks )= f RNV () ulyr)ridr
Jilksa)

ni(k.a

f k) V () ji(kr)rtdr,  (43)

and e is the h.c. radius. On comparing Eq. (2.14) with
Eq. (3.1) and noting the definitions (3.6) and (3.7),
it is found that

Ti(ks| kp) = wi(ks| k) /mi(ks ky),

Jilky| k) —7i(ks| k) fulkes| ko)
=Tu(ki| k){[ji(ks0)/ ji(kia) J—71(Rs | R2)},  (4.5)

(4.4)

and

Ai(kslkp)=— (4M /7h?)[ri(ks| kp)— 71 (ks | k)]
X “l(ki l kp)kp2 (kpz_ kL (4-6)

Equations (4.4)-(4.6) together with Eq. (3.5) define
the Fredholm form of Eq. (2.14) for the function
K z(k flki).

If no h.c. is contained in the interaction, the integral
equation for K;(ks|k;) is somewhat easier to study.
This restriction on the interaction will be made in
most of the detailed considerations to follow. However,
the effects of introducing a h.c. will be discussed when
appropriate.

Without a h.c., it is sufficient to consider the function
¢i(kys| k;) which is defined by Eqgs. (3.8) and (3.9) with
R replaced by K;, and 7; and A; given by Egs. (4.4) and
(4.6), respectively. Since ¢:(ks|k;) is a dimensionless
quantity, it will prove convenient to write Eq. (3.9) in
a manifestly dimensionless form. To accomplish this,
first introduce the dimensionless variables

§= k/k,’,

and, secondly, write

(4.7)

F= k,;?’,

V(r)=VoF(#), (4.8)

where Vy is a constant with the dimensions of energy.
Then, for this case, Eq. (3.9) can be rewritten in the

38 The numerical factors resulting from the antisymmetrization
of states are included. Along with this, ! is assumed to be always
even or odd.
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form3*

as| D =nts| D= [ <=

IETI(SIS')—TI(Sl 1]

Xa(1{s) ei(s'| 1)ds’,  (4.9)
where
w(s|s)= fj;(sr")F(f)jl(s'r")f""di, (4.10)
and
A= (2Vo/1rE,-). (411)

The remainder of this section is devoted primarily to
the discussion of two methods of obtaining approximate
solutions of Eq. (4.9). First, the iteration or Neumann
series solution is investigated. Second, a study is made
of the possibility of replacing Eq. (4.9) by an integral
equation which is exactly soluble and whose solution
closely approximates the actual solution of Eq. (4.9).

Let us consider the iteration series derived from
Eq. (4.9). Here, the essential problem is to determine
when this series actually represents the solution of
Eq. (4.9). A secondary question is the matter of the
rapidity of the convergence of this series assuming that
it does represent the solution. Associated with the latter
problem is the determination of when the Born approxi-
mation provides a good representation of the actual
solution,®

Instead of examining Eq. (4.9) directly, it is con-
venient to consider the integral equation satisfied by
the Hankel transform, ®;, of ¢;, where

By(w) = f i) eils| )ids,  (4.122)

2
oi(s|1)="= f ji(ws)Bywywrdw.  (4.12b)

If Eqgs. (412a), (4.12b), and (4.9) are combined, it is

found that
WF(w)]l( ) [
& (w)y=——— 2 w)\fz F(w)
ja(w) ,
X8t (al: )—*( i Jon Gloreea)
X&(2)ds, (4.13)
where ) S
i w), z,
g/ (w|2)= {? (Bm(w), w (.19
Fi(wn(z), w<a.

Let k;(w|3z) denote the kernel of Eq. (4.13). Then an
iteration solution of Eq. (4.13) exists, is unique, and

3 To simplify the notation, ¢i(ks|%:), for example, has been
written as ¢; (sfl), etc.

3 In this paper the Born approximation is taken to mean the
zeroth order iteration of a given integral equation.
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converges uniformly if®

EN?
BzEfdwfdzlk,(wlz)Pg (7) . (415)

The uniform convergence permits the integration of
the iteration series for ®; term-by-term to yield the
corresponding series for ¢;.

A straightforward way to gain some insight into the
behavior of B; as a function of energy is to assume a
form for the interaction F(w) and then carry out the
integration in (4.15) for a significant range of energies.
For a square well, i.e.,

1, w»
F(w)={ e (4.16)
0, w>p,

where p=RE; and R is the range of the well, £;(w|3) is
simply

ki(w|2)

=z2[g,’('w[ 2)— i)

D f j,(t)g,'(zlt)ﬂdt], (4.17a)

for (w,z)<p and

E(w|2)=0 (4.17b)

otherwise. In particular, for /=0, Eq. (4.17a) becomes

ko(w|2)= (2/2w){[sin|2—w| —sin (z+w) ]
—[2sinw/@,(1|1)]
X[z— (cosp+p sinp) sinz]}. (4.17a’)

Now, for the interaction (4.16), Eq. (4.15) may be
rewritten as
By/p*< (B*/2M RV ()2 (4.18)

If the kernel (4.17a’) is used to compute B, it is found
that

lim (Bo/p*)~0.23, (4.192)
p—0

and
Bo/p*~ (57/12p)(5—4 sin%), (p— ). (4.19b)

From Egs. (4.19a) and (4.18) it is clear that the
iteration solution can exist at zero incident energy for
nonzero Vy;indeed, with R=2.6 { the iteration solution
exists provided | V| is less than about 12 Mev. Also,
from Eq. (4.19b) it follows that for high enough energy
the iteration solution will always exist; however, for
typical potentials this energy may be so high as to be
of no practical interest.

In order to obtain more detailed information on the
iteration solution, the quantity By, was computed for
laboratory energies from 0 to 500 Mev, assuming a
square-well interaction. The well parameters were
chosen to be those which fit the low-energy proton-

% See reference 25, p. 29.
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proton data (|V,|=13.3 Mev, R=2.6{). Since Eq.
(4.15) is only a sufficient condition for the existence of
the iteration solution, just those energies where the
series is definitely a solution of Eq. (4.13) were estab-
lished. The iteration series was found to be a valid
solution in the two (approximate) intervals 0-118
and 200425 Mev; the most rapid rates of convergence
occurred in the lower-energy interval.

It can be concluded from the preceding results that
the iteration method will most probably be unjustified
for the interactions and energies of interest in the
nucleon-nucleon scattering problem. The presence of a
h.c. in the interaction is unlikely to alter this conclusion.

The statements made above concerning the validity
and convergence of the iteration series refer to the
entire domain of the independent variable. However,
it is evident from Eq. (4.9) that, in the neighborhood
of s=1, the solution consists predominantly of the
inhomogeneous term 7;(s|1). Hence, there exists a
neighborhood of s=1 where the Born approximation is
valid independently of whether or not the iteration
solution is valid in the whole domain of s. It is then of
interest to investigate in how large a neighborhood of
s=1 will the solution be given accurately by the Born
approximation.

The validity of the Born approximation can be
easily checked if the exact solution ¢; is known for a
particular problem. In the case of a square-well inter-
action, ¢; is known, e.g., for /=0,

eo(s| 1)=(1/9){ jol (s—@)p]—jol (s+@)p ]}
X{jo[(1=@)p]—jo[(1+a@pl}™, (4.20)

where
a=[(E~+V)/E.

The inhomogeneous term 7¢(s| 1) may be obtained from
(4.20) by setting @ equal to unity.

The exact solution ¢o(s|1) and the Born approxima-
tion 7o(s|1) were calculated using the same well
parameters as before at laboratory energies of 40, 118,
and 150 Mev in the interval 0<5<2.0. At the first
energy, the iteration series definitely represents the
solution of the integral equation in question. The
second energy represents a transition point between
regions of energy for which the iteration series is a
solution and where it is possibly not. At 150 Mev
nothing is known concerning the validity of the iteration
series.

The intervals about s=1 for which

[ @o—7o|/| ¢o] £0.10

are (0-1.9), (0.7-1.3), (0.8-1.2) for the energies 40,
118, and 150 Mev, respectively. The agreement between
@0 and 7¢ is poorest at the end points of the intervals
considered; however, for s>2.0 the magnitudes of
both ¢ and 79 are small compared to unity so that the
difference between them is unlikely to be significant
in physical applications.

(4.21)
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For />0, the agreement between ¢; and 7; is likely
to be better than in the /=0 case. This is a result of
the fact®? that both ¢; and 7; are zero for s=0 when
150, Thus, there are two points in the interval (0-2.0)
where the Born approximation is strictly valid.

It can be concluded, at least for a square-well
potential, that the Born approximation is valid in a
fairly large energy interval (on the order of E;) about
the energy shell. There is little in the structure of the
integral equation (4.9) to suggest that this conclusion
will not hold for any of the typical nucleon-nucleon
potentials.

If a h.c. is present in the interaction, it is necessary to
consider, in addition to ¢;, the function §; which is de-
fined by Eqgs. (3.8) and (3.10). Also, 4;(s|s") will now
contain an additional term corresponding to the last
term of Eq. (4.3). However, from Egs. (3.11a) and
(3.11b) it is clear that there exists a neighborhood of
s=1 where the Born approximation is valid for each of
the integral equations satisfied by ¢; and 6;. From the
form of these integral equations, there is again no reason
to expect much deviation from the results quoted above
for the case that a h.c. is absent. The only significant
difference from the behavior of ¢; without a h.c. is that
o1 and 8; will drop off more slowly for large s. This will be
discussed later.

A second method of obtaining an approximate
solution of Eq. (4.9) will now be investigated. Consider
the integral, H,(s), in Eq. (4.9),

"
mi= [ ——
s

The bracketed term under the integral sign in Eq.
(4.22) is, in general, an inseparable function of s and ',
If this term could be replaced by a separable function,
the integral equation (4.9) would be exactly soluble.
The possibility of making such a replacement will now
be examined.

Now it is much simpler to approximate a function on
a finite rather than on an infinite domain. Accordingly,
make the change of variable

s=(1-9)/¢.
Then Eq. (4.22) can be written as

Hs(5)]

[ri(s]s)—7u(s|1)]

X (1) (s’ 1)ds’.  (4.22)

(4.23)

(=g
——if e ECIC QR EIRE)
0 -2
&’
Xals@3)|s' ) ]edls' )] S(%)]F-
Assume for the moment that 7,[s(¢)[s"(¢’)] admits of a
power series expansion in ¢’ about the point {'=%.

(4.24)

3 This is valid for any potential whether or not a h.c. is present.
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The lowest-order approximation to Hi[s({)] is then
obtained by retaining the first two terms of this series,
viz.,

1 9
H[s(®)]~—} f (1—¢) {a?n[s«)ls G)]}H
&’
Xals@) s’ s’ )1 S(%)]}E (4.25a)

The retention of the first two terms in the series for
71 is consistent with the assumptions given in the
paragraph immediately following Eq. (3.1) on the
functions entering into the integral equations of interest.

If Eq. (4.23) is employed, Eq. (4.25a) may be
transformed back to the infinite domain with the
result that

bl Dya,(1]s '[1)ds’, (4.25b
1= [ SRR D8, (4250

where
Fi(s|s)=[ri(s|s)—m(s|D](s"— 1)1 (4.26)

With the approximation (4.25b) for H,(s), the integral
equation (4.9) is exactly soluble [see Eq. (4.34) below].

A justification for making approximation (4.25b)
will now be given. First, introduce the quantities

Fi(s|s)=3(s"+D)[F:(sl5)
=2(s"+1)"1F,(s|1)], (4.27a)
and

Zu(s|1)=252(s+1)"2,(1|s) eu(s|1). (4.27b)

Equation (4.22) becomes, with the use of Egs. (4.26)
and (4.27),

H;(s)=f[F';(s]s’)+Fl(s[1)]¢l(s’]1)ds’. (4.28)

The approximation (4.25b) consists in neglecting
Fi(s|s") in this last equation.

Some functional properties of the terms under the
integral sign in Eq. (4.28) will now be noted. For all
s', Fy(s|s") is bounded; also,

Fz(S' 1)=0

For typical short-range potentials it is easy to deduce
that

(4.29)

a(1]s)=0(1/s), (4.30)

(s = ),

and
ei(s|1), wm(|s)=0(H, (s—0). (431)

Equations (4.29)—(4.31) are valid when a h.c. is present ;
in this case #;(1|s) contains terms corresponding to
both the terms in Eq. (4.3).

When the interaction does not contain a h.c., ¢;(s|1)
=Ki(ks| k:;)/Ki(k:| k:); it is then simple to deduce that,
with a typical short-range potential,

ei(s|1)=0(1/s%), (s— ). (4.32)
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From the asymptotic properties (4.30)-(4.32) and
Eq. (3.11a) it follows that

2u(s|1)=0(1/s*), (s— ), (4.33a)

Zu(s|1)=0(s22), (s—0), (4.33b)
and

ails|D=ga(l]s), (s=1). (4.33¢)

Finally, it will be assumed that the difference between
the maximum value of #;(1]s) and #;(1|1) is small.
This assumption can be shown to be fairly good for
square and Yukawa wells with or without a h.c.

It seems reasonable to conclude from the properties
(4.33), along with the assumption made on #(1}s"),
that @i(s’ Il) will have its maximum value in a neighbor-
hood of s'=1. However, it is in this region where
Fi(s|s")/Fi(s|1) is smallest. Therefore, the value of
H,(s) will probably not be altered much if F;(s|s") is
dropped from the integrand. If this approximation is
made, the solution, ¢;%, of the approximate integral
equation is

¢la(s]1)=n(s|1)—%l—)2{f[s — z(1|s')]ds }

52
x[1+2>\ f
(s'+1)2

The approximate solution ¢;* was computed using
the square-well potential discussed previously for the
case I=0. The quantity

A= | g~ ¢0®| /| o

was found to be less than 0.01, 0.03, and 0.02 for the
energies 40, 118, and 150 Mev, respectively, in the
interval (0-1.0). In the region s>1.0, A is less than
0.05, 0.07, and 0.08 in the interval (1.0-1.8) for the
energies 40, 118, and 150 Mev, respectively. In the
interval (0.8-1.2), ¢, and ¢y* are indistinguishable.
For s221.8, both goand ¢¢® are small compared to unity.

It can be concluded that ¢¢® is quite a good approxi-
mation to ¢, when 0<s< 1.8 for the case considered.
The agreement between ¢; and ¢;* will be better for
larger I because of the property (4.33b).

Now the validity of the approximation (4.25b) rests
essentially on two points. The first of these is that
#1(s|1) be peaked in the neighborhood of s=1. The
position of this peak will probably not vary much
among the class of typical nucleon-nucleon potentials.
Secondly, it is required that in the neighborhood of s'=1
the function 7;(s|s’) be predominantly a linear function
of (s'~1)/(s’+1) in order that Fi(s|s") be slowly
varying in this region. This condition on 7;(s|s") is
true for any potential in a small enough neighborhood
of s'=1. It is unlikely that such a property of 7; would
be strongly dependent upon the detailed shape of the
potential. Hence, the results for any other typical

Fu(s'| l)ds’]_l. (4.34)
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short-range potential should not differ much from the
results obtained for the square well.

When the interaction contains a h.c., the situation
is complicated by the fact that K;(k;| ;) will drop off
only as fast as 1/k; for large %, instead of exhibiting
the behavior (4.32). If the potential V is absent, then
K;=T;and the 1/k; behavior is evident from Eq. (4.2).
The origin of this property can be understood since the
h.c. may be viewed as being equivalent, in some respects,
to a delta-function potential.lt12

Apart from the asymptotic properties of K;(k| %) for
large %y, there is essentially no difference in the func-
tional behavior of u;(k;|k,) and K;(ks|k:) from the
case without a h.c. [cf. Egs. (4.30), (4.31), (4.33Dh),
(4.33c), and the associated remarks]. Since the asymp-
totic behavior for large ks is a result of the h.c, it
seems reasonable to expect that, if the effects of the
h.c. could somewhow be “subtracted” out of the K
matrix, the resultant “reduced” K matrix would have
properties similar to K when no h.c. is present. If thisis
the case, one can, as before, replace the kernel of the
“reduced” integral equation by a separable function.

A precise formulation of the subtraction procedure,
discussed in the preceding paragraph, can be obtained
as follows. Let

Kok, | k) =(f| V¢s);

when the h.c. radius is zero, K° is identical with K.
It is a simple matter to prove that K°(k|k;) will behave
as 1/k/ for large k; when V is a typical short-range
potential. The behavior of K° for small &, is the same as
in (4.31). As usual, the potential V (r) is assumed to be
central.

From definition (1.28) it is observed that

(4.35)

K (ks k)= Kok | k) + f ki (k) KO (k| )
+T (ks | ko). (4.36)

Equation (4.36) can be rewritten in terms of the
partial-wave amplitudes as

Ki(ks| k)=K (ks ki) ju(ksa) f Gi(kp) K (kyp| k:)dEy

+T (ks ), (4.37)
where
gi(a|r)
4 P__ I\Kp 2d; .
D)=, f;( G

Now K (ks k:) satisfies the integral equation

Ki(ks| k) =[filks| k) —71(Rs| ko) fo(Ri| k)]
+riks| k) K (k] k2)

n f Mg k) Killy | Ri)dRy;  (4.39)
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the kernel and the inhomogeneous terms of this
equation are given in Egs. (4.4)-(4.6). By inserting
Eq. (4.37) into Eq. (4.39), it is found that K,°(ks| k)
satisfies the integral equation

KOk k)= fi (ks | k) + 11 (k) f Gi(ky)

XKD (ky Rkt [ MaChs| 1)
XK (k| k)dk,, (4.40)
where

JiO ksl k)= [ fulkys| ki) —Ti(ks | k) fi(R:| k)]
+ri(ks| k) Ko(ki| k) —Ti(ks| ki)

+ f Aoy BTl | R)E,  (4412)
and

[1®(kp)= ji(ksa)— f Ar(ks| ky) ji(kpa)dky,  (4.41D)

Now, K has all the properties which were attributed
to the function ¢; in the case of an ordinary interaction.
Also, it follows from the previous discussion of the
properties of u;(k;|%,) that the kernel A; has all the
properties of the kernel of the integral equation for
@1 in the case without the h.c. Hence, the kernel A; can
be replaced by a separable kernel in the same manner
as before and with the same justification. Equation
(4.40) is then exactly soluble.

The solution K of Eq. (4.40), and Eq. (4.37),
determine K;(k;| k;) in terms of K;(k;|%;). It should be
remarked that the integral in Eq. (4.37) need not be
evaluated, since it is clearly one of the constants to be
determined in the solving of Eq. (4.40).

V. CONSISTENCY REQUIREMENT AND THE ON-
THE-ENERGY-SHELL MATRIX ELEMENTS

In Sec. IIT a singular integral equation (3.1) was
reduced to the Fredholm form (3.5) with the assumption
that the solution R(x|y) of (3.1) was known for x=1y.
It is essential that the solution of the Fredholm equation
be consistent with the original singular integral equa-
tion. In this section the condition of consistency will
be derived and some of its consequences discussed. For
the sake of generality, the notation of Sec. III will be
used throughout.

Since Eq. (3.5) is a Fredholm equation, its solution
may be written in the form

Ra|y)=f"(x|y)+r )R]+ f &y (x]2) 1 (5] y)ds

+[ ] ay(x|z>r<z|y>dz]R(y|y>, (5.1)
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where

[ @ly)=f&|y)—r@lnf]y), (5.2)
and the resolvent kernel ®,(x|z) is independent of
R(y|y) and satisfies the condition

&, (y|2)=0. (53)
A consistency requirement on the solution (5.1) can
now be derived by substituting Eq. (5.1) into the
integral of Eq. (3.1) and setting x=1, viz.,

R(yly)=ll—PfT’(yIZ)[T(ZIy)
+ f &,z l)r(t]y)dt]dz }_l
><{f(yly)-l-PfT’(yIZ)[f’(ZIy)

+f (Ry(ZIt)f’(tly)dt]dZ}, (5.4)

where

T'(y|2)=2¢(y]2)/ (22— ). (5.5)
In order that the solutions of Egs. (3.1) and (3.5) be
consistent with one another, ®,(x|z) must satisfy
Eq. (5.4) with R(y|y) regarded as known.

On the other hand, suppose that R(y|y) is not known.
Then the consistency requirement (5.4) is, in fact, the
expression of the solution for R(y|y) in terms of
®Ry(x|z). Any possible usefulness of this observation
depends on how precisely ® must be known in order to
obtain a good approximation for R(y|y). If ® has to be
known very accurately, then it is certainly more
convenient to calculate R(y|y) (for physical problems)
using conventional techniques.

If the major contribution to the integral in Eq. (3.1)
comes from a rather small neighborhood of z=1y, then
the solution (5.4) will be quite useful. The point is
that, when R(x|y) as given by Eq. (5.1) is substituted
into the integral of Eq. (3.1), it is mainly the inhomo-
geneous term in Eq. (5.1) which will contribute in the
region near z=y because of (5.3). Thus, if this neighbor-
hood of z=1 is really the only important region in the
domain of integration, any inaccuracies in ® will be
minimized.

Apart from any questions of validity, it is interesting
to examine the structure of a simple approximate
solution for R(y|y) which can be derived from (5.4).
Consider the case when the resolvent kernel is taken
to be identically zero. Then, if T’ and f are replaced
by AT’ and Af, respectively, where A is a constant, it
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follows from Eq. (5.4) that

R(yly)=>\f(yly)+>\2[1—>\PfT’(ylZ)T(ZIy)dZ]—

xP [T/l 610 (56)

Approximation (5.6) has a resemblance to the first
iteration or the ‘“second Born approximation” for
R(y|y). However, Eq. (5.6) would appear to be a
better approximation than this.3® The second Born
approximation is simply the replacement of R(z|y) in
the integral of Eq. (3.1) by f(z|y), whereas approxima-
tion (5.6) is equivalent to the replacement of R(z|y) by
7(z|¥)R(y|y)+ f'(z|y). But the latter expression is
exactly equal to R(z|y) for z=4y; also, it has roughly the
same asymptotic properties as f(z|y) for z much
different from y (at least in physical problems). On the
other hand, f(z|y) is, in general, not a good approxima-
tion to R(z|y) for any value of z.

It should be noted that the expression on the right-
hand side of Eq. (5.6) involves all orders of the coupling
constant \. To this extent, the approximation procedure
leading to (5.6) can be called nonperturbative,

8 When no h.c. is present, approximation (5.6) for R(y|y) can
be shown to be equivalent to the use of a plane wave trial function
in a variational expression for R(y|y) of the form derived by
Schwinger.
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APPENDIX

A proof of Eq. (1.30) when the interaction contains
a h.c. will now be given. If Eq. (1.17) is used to eliminate
the free ¢; term in Eq. (1.14), it is found that
V=G V¥4 G (wi— @) VD
+im 22, Tip,6(Ei— Eptst (Ti—Ti)ei], (A1)
where
Y=y —yitir 2 ;Y0 (Ei— Ejtji. (A2)

A summation sign has been used for the sake of brevity,
If the coordinate representatives [cf. Eqs. (1.12) and

(1.13)] for w;, @;, T';, and T'; are employed, the following

identities may be established by direct verification:

Iy=T,—ixlS(E;—H,)T;, (A3)
wi=a;—irl S (Ei— Ho) (14ws), (A4)

where w; and @; are assumed to operate only on vectors
whose coordinate representatives vanish for |r|<a.
Equation (A3) is simply Eq. (1.30) when the interaction
consists only of a h.c. With these relations, Eq. (A1)
becomes simply

‘I’,'= G.‘V‘I’g‘. (AS)

If the solution of Eq. (1.17) is unique, then it is
easily shown that the operator G;V has no eigenvectors
corresponding to the eigenvalue unity. In this case,
it is evident from Eq. (AS) that ¥, must vanish iden-
tically. Then the combination Egs. (A2)-(A4) yields
Eq. (1.30). This proves the statement made in the text.
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Multiple scattering effects due to a random array of obstacles are considered. Employing a “configu-
rational averaging” procedure, a criterion is obtained for the validity of approximate integral equations
describing the various field quantities of interest. The extinciion theorem is obtained and shown to give tise
to the forward-amplitude theorem of multiple scattering. In the limit of vanishing correlations in position, the
complex propagation constant x of the scattering medium is obtained. Under appropriate restrictions, the
expression for « is shown to include both the square-root law of isotropic scatterers and the additive rule for
cross sections valid for sufficiently low densities of anisotropic obstacles. Some specific examples from
acoustics and electromagnetic theory then indicate that at least in the simplest cases the results remain

valid for physically allowable densities of obstacles.

1. INTRODUCTION

HE problem of scattering of an incident wave by
a single obstacle has been considered rather
thoroughly in the literature, beginning with Rayleigh’s
work in fluids, and continuing to the present day with
various quantum-mechanical, electromagnetic, and
elastic cases. The literature on multiple scattering, on
the other hand, is not so extensive. Regular arrays of
scatterers were treated by Huygen’s principle or
various perturbation schemes, mainly with an eye to
obtaining their “strong” filtering properties arising due
to periodicity. Out of this work came x-ray diffraction
theory and the band theory of solids. Random dis-
tributions of scatterers first drew interest in connection
with the problem of dispersion in metals, and theo-
retical analysis gave results in reasonable agreement
with experiment over the range where classical con-
cepts should be expected to apply.

Such treatments were concerned with problems in
which the linear dimensions of obstacles were very
small in comparison with the wavelength of incident
radiation, so that the scattered waves from individual
obstacles were either isotropic or dipole in nature.
Recent investigators have been concerned with the
more difficult case where the ratio of wavelength to
scatterer size can be arbitrary, thus requiring that
higher-order multipoles be included in the scattered
radiation. Interest in such problems has been stimu-
lated by improvements in the technique of generating
and observing various kinds of radiation. Ultrasonic
techniques, for example, permit one to generate and
observe the behavior of nearly plane elastic waves in
solid specimens containing a volume distribution of
scattering regions which might be individual grains of

* This work is an extension of earlier work reported by P. C.
Waterman and Rohn Truell, Tech. Rept. WAL 143/14-49,
Metals Research Laboratory, Brown University (October, 1957).
The more recent work was supported by the U. S. Air Force
Ballistic Missile Division of the Air Research and Development
Command.

a polycrystalline specimen.! Microwave techniques
allow one to investigate the propagation behavior of
artificial dielectrics composed of an array of infinite
conducting cylinders? or metal or dielectric spheres
embedded in a supporting matrix.?

In 1945 Foldy introduced the concept of ‘“‘configu-
rational” averaging by utilizing the joint probability
distribution for the occurrence of a given configuration
of (isotropic point) scatterers to average the resulting
wave over all configurations.? This procedure was later
generalized by Lax to include point scatterers with
quite general scattering properties, using a quantum-
mechanical formulation.® Twersky has used the same
procedure to treat scattering and reflection of sound
waves by a rough surface.® Extensive references to
other related work are given by the last two authors.

With the advent of Foldy’s paper, the fundamental
difficulty inherent in multiple scattering computations
involving random arrays of obstacles was brought out
in bas-relief. In simple terms, it is the question of what
relation exists between the exciting field acting on a
scatterer at a point, and the total field which would
exist at that point if the scatterer were not there. The
answer to this question is extremely important because
without it one cannot obtain a governing equation for
the desired average field quantity. Foldy assumed
a priori that the two fields in question were equal,
while Lax related them by an undetermined constant

1'W. P. Mason and H. J. McSkimin, J. Acoust. Soc. Am. 19,
464 (1947); J. Appl. Phys. 19, 940 (1948); also, W. Roth, J. Appl.
Phys. 19, 901 (1948).

2Z. A. Kaprielian, J. Appl. Phys. 27, 1491 (1956).

3R. W. Corkum, Proc. Inst. Radio Engr. 40, 574 (1952).

¢L. L. Foldy, Phys. Rev. 67, 107 (1945).

§ M. Lax, Revs. Modern Phys. 23, 287 (1951); Phys. Rev. 85,
621 (1952).

8V. Twersky, IL.R.E. Trans. on Antennas and Propagation
AP-5, 81 (1957); J. Acoust. Soc. Am. 29, 209 (1957). Reflection
by rough surfaces has also been considered by M. A. Biot, J.
Appl. Phys. 28, 1455 (1957); 29, 998 (1958). A recent review of
multiple scattering has been given by V. Twersky, J. Research
Natl. Bur. Standards 64D, 715 (1960).
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MULTIPLE SCATTERING OF WAVES

of proportionality which was assumed to be close to
unity.

The purpose of this paper is to derive the equations
governing wave motion in a medium containing an
array of finite scattering regions. It will be seen that
within the limitations of the specific case considered,
the treatment is equally applicable to classical and
quantum mechanical problems. The program is as
follows. Using the statistical approach of Foldy and
Lax, the first partial average of the exciting field is
computed; this is simply the field “incident” on a
scatterer known to be at a given position. By “incident”
field is meant the entire field in the external neighbor-
hood of a scatterer, less the outgoing scattered wave
from the scatterer. This first partial average is obtained
in terms of the second partial average of the exciting
field. The second partial average is that of the field
incident on a scatterer known to be at a given position
where in addition the position of a second scatterer is
known.

On continuing this procedure, one obtains each time
the field incident on a scatterer with » scatterer posi-
tions known in terms of the corresponding field with one
additional scatterer position known; thus, with a total
of IV scatterers there results a system of N equations
in N unknowns. Next the averaged total field is com-
puted. This is the field one would actually measure if
no explicit information were available concerning
scatterer positions, and is obtained in terms of the first
partial average of the exciting field.

Although the resulting system of N+1 equations
may in principle be solved, the labor is prohibitive,
and an approximation procedure must be employed.
In what follows, the conditions have been indicated
under which the exciting field may be approximated
by the total field, in the process obtaining governing
equations for the total coherent field and the exciting
fields when one, two, or more scatterers are known to
be at given positions. Under the same conditions, a
governing equation may also be obtained for the total
energy density, including both coherent and incoherent
effects.

Because of the extreme complexity of these equations,
only the averaged exciting field with one scatterer fixed
will be considered explicitly. A solution is obtained for
the simplest geometry in which a plane wave is incident
normally on an infinite half-space containing a uniform
random distribution of identical scatterers. The central
result of this computation is an expression for the com-
plex propagation constant describing propagation in
the “scattering medium.” With appropriate restrictions
on the density and scattering amplitude of obstacles,
this result appears to be valid over the whole frequency
spectrum, thus bridging the gap between the low-
frequency limit of point scatterers, where Foldy’s
results are obtained for isotropic scatterers, and the
high-frequency limit where results are in agreement with
the picture given by geometrical optics. By consider-
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ation of some specific examples in Rayleigh (low
frequency) and geometric optics (high frequency)
limits, it is suggested that the result is also applicable
to all physically allowable fractional volumes of ob-
stacles. In particular, the description of propagation
behavior is in many cases correct at the limit when the
fractional volume of obstacles is unity, corresponding
to complete replacement of the supporting medium by
the material of which the scatterers are made up.

For the sake of clarity and compactness, we will
confine the main discussion to only the scalar problem
where the vector nature of pertinent field quantities is
secondary, so that the computations need consider only
a single scalar potential. The formal extension of the
governing equations to include more involved solenoidal
wave motion and mode conversion is described briefly.

2. GOVERNING EQUATIONS OF MULTIPLE
SCATTERING

2.1 Statistical Preliminaries

Problems of physical interest within the framework
of multiple scattering range from the case of a regular
array of obstacles with spacings comparable with the
wavelength of incident radiation to the case in which
scatterers are stationed nearly at random. Attention
here is focused mainly on the latter situation, utilizing
the methods developed by Foldy* and Lax® to average
over all configurations of obstacles consistent with the
statistical information available. In many physical
applications such an averaging process occurs naturally
in the course of experiment, either due to the measuring
device averaging over a region large compared with any
of the lengths involved, or where the configurations are
changing with time rapidly in comparison with the time
scale of measurement. An extensive discussion of meas-
urements and applications has been given by Lax.

Consider a function f(r|ryrs,---,ry) of space co-
ordinates r and NV position vectors 1y, Iy, - - -, ¥y drawn
to the center of each of the scattering regions. If the
specific configuration of scatterers is not of special
interest in the problem, the configuration may be
regarded as one state in an ensemble and an average
over all states may be taken.

In accordance with Foldy ? let

p(ryre, - xw)dry - -dry (2.1)

be the probability of finding the first scattering region
with center in the volume element dr, at r;, while at
the same time the second scatterer is in drs at r3, and
so forth. This joint probability distribution p(ry,- - -xx)
is to be restricted at the outset by the following con-
ditions: The integral of the joint probability distri-
bution over all configurations of scatterers is normalized
to unity; the N scatterers are indistinguishable, which
allows position vectors to be interchanged at will in
Eq. (2.1) without changing the numerical value of the
expression: finally, overlapping of scattering regions is
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excluded, hence p(ry,- - -,ry) is made to vanish for all
such situations.

The probability of finding a particular scatterer in
d7y at 1y if no other information is available, is

P(l’l)d‘rl:dTlf' . 'fd‘rz' . ’dTNP(l’l,' . ',IN). (22)

Since each of the IV scatterers has equal likelihood of
occupying dri, the denmsity n(xr,) of scatterers at r; is

then given by
n(r)=Np(r,). (2.3)

The joint probability of finding the first scatterer in
dr; and the second in dr, is given by

p(ry,ro)dridrs
__:d,rld.rzf..-fd73'°'dTNP(r1,"';rN)1 (2'4)

where again in terms of densities

n(t)n(rz| )

N1 . (2.5)

p(ri,r2)=p(r)p(r:| 1) =

Here p(r:|ry) and #n(ry|r,) are conditional probability
and density, respectively, at r; if a scatterer is known
to be at 1.7 The first equality constitutes a definition
of conditional probability, while the second follows
from Eq. (2.3) and the observation that any one of the
N—1 remaining scatterers has equal probability of
lying in dr. if one scatterer is in dr,.

The configurational average of f(r|ry,---ry) is
defined by

(sey= [ [ars-drs

XP(I'I;‘ ° ',I'N)f(l',l'1,' ° 'er>-

The partial average with one or more scatterers held
fixed is obtained by averaging over the appropriate
conditional probability: Thus f(r|r,), the average of
f(x|ry,---,xy) over all configurations for which the
first scatterer is at 1y, is given by

f(rlrl)Ef"'fdfz"-drN

X?(l'z, e ’erfi)f(r! S TR ,l'N) (2‘7)

(2.6)

and so on.

2.2 Averaged Exciting Field

Consider a homogeneous isotropic medium capable of
sustaining wave motion according to the scalar Helm-

7"The concept of conditional probability has been defined
lucidly by W. Feller, Probability Theory and Its Applications
(John Wiley & Sons, Inc., New York, 1950), Vol. I, p. 78.
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holtz equation

(A+R)(r)=0,

and consider only problems for which the time de-
pendence is simple harmonic. The time-dependent
scalar potential is obtained by multiplying ¢(r) by
exp(—swt). The (irrotational) vector field quantity of
interest is given by V Real Part[y(r) exp(—swt)]. The
propagation constant Z may be real or complex; the
complex case corresponds to dissipation in the (matrix)
medium.

Embedded in this medium are V identical scattering
regions located at 1y, 1, « - -, ry. Under the influence of
an incident wave ¥*¢(r) and the scattering from other
scatterers, a scattered wave ¢S5(r|rj;ry,---,ry) is
generated by the jth scatterer. Here the first coordinate
r specifies the field point of evaluation, r; gives the
location of the scatterer originating the radiation, and
the 1y, - - -, ry indicate the dependence of the scattered
wave on the specific configuration chosen. The proper-
ties of a single scatterer are assumed known, so that a
rule is available relating the scattered wave and the
exciting field YE(r|r;; 11, -,xy) acting on the jth
scatterer to produce scattering. This rule defines a
linear scattering operator T (x;) by the relation

YS(x |5 1, - xw)=T ()5 (x| x5 10, - - 2w).

The exciting field is assumed to be a regular solution
(in r) of the unperturbed Helmholtz equation, Eq.
(2.8), in the neighborhood of r; in order that the single-
scatterer computation be applicable.! Employing the
radiation condition, the scattered wave has the form
of outgoing radiation and is a regular solution of Eq.
(2.8) everywhere but at r=r;, where a singularity is
present.

Now the exciting field acting on the jth scatterer is
just the sum of the original incident wave and the
scattered waves from all scatterers otker than the jth,
giving the implicit relations

(2.8)

(2.9)

YE(r|x;5 1,0 - - 1N)
N
=yine(r)4 3 T(r)y®(r|re; e, IN);
P

j=1,2,--- N. (2.10)
These relations account completely for the effect on
each scatterer due to the presence of other scatterers.
In terms of a multiple orders of scattering approach,®
where primary scattering is due to the incident wave
alone, secondary scattering represents one rescattering
of the primary waves, and so on, all orders are included
in Eqgs. (2.10). This is easily seen by employing repeated

8 This assumption on the regular, unperturbed nature of the
exciting field is tenable because of exclusion of interpenetration,
which specifies a distance of closest approach of singular points,

9 Discussed by V. Twersky, J. Acoust. Soc. Am. %3, 42 (1952).
See also K. Fukiwara, J. Phys. Soc. Japan 14, 1513 (1959).
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iteration to obtain the infinite series

YE(r|r5 1, -’tN)=¢inc(r)+,§‘ T (x )i (x)

O (AU OREES

k#Em

+ }é T(r) (2.11)

Here the single summation gives the primary scattered
terms, the double summation the secondary terms, and
so on. Although we may be dealing with finite size
scattering regions, behavior inside these regions need
not enter in a discussion of the exciting field.

Because of the complicated nature of Egs. (2.10),
it does not appear feasible to attempt to invert them
to obtain explicit expressions for the exciting fields.
Instead, the equations will be averaged as they stand.
Consider the partial average according to Eq. (2.7) of
the first of Eqgs. (2.10) over those configurations for
which the first scatterer is fixed at r;. The incident wave
may be taken outside of all integrations as it is inde-
pendent of scatterer positions, leaving an integral
normalized to unity. Also, since the scattering operator
T(rs) is linear, it may be taken outside all but the
integration over ry, which is deferred until last. At this
point one has

Wo Gl n)>=¢*nc(r>+§2 f dniT (x) f - f dry-tedry

Xp(l'2,' ’ '7rN!r1)¢E(r|rk; L SPR ,I'N).

The conditional probability may be rewritten in the
form

P(rg, crIN l 1'1) = [ﬂ(l‘k [ 1’1)/ (ZV— 1)]P (r27 e ’errlyrk)’

and upon insertion in the multiple integral the term in
square brackets may be factored out of all but the r,
integration. The (V—2)-fold integrals are now recog-
nized as partial averages of the exciting field with two
scatterers held fixed. Further, the summation may be
replaced by a multiplying factor (N—1) due to indis-
tinguishability, so that one finally obtains

WE@|r))=y™ @)+ Sdr'n(d’'[1)T(r)
XGE (|1’ ;1)

This lack of completeness, the fact that the exciting
field with one scatterer fixed is given in terms of the
field with two scatterers fixed, is the basic difficulty
_encountered in the implicit approach to multiple
scattering. Because of the exclusion from the range of
integration of points in the vicinity of ri, (VE(r|r.))
is a solution of the unperturbed medium equation in
1, as are the higher partial averaged fields given below.
In computing higher partial averages of the exciting
field, one new feature enters. Consider the partial
average at r; with r; and r, fixed, for example. Since
one term in the summation is a scattered wave from

(2.12)
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r;, after the averaging is performed this term will
stand apart from the others, outside of the integral
sign. Additional terms of this form appear as more
scatterers are held fixed. This effect serves the im-
mediate purpose of removing just the right number of
terms from the summation to permit exact cancellation
of any factors containing V. Aside from these additional
terms, it should be clear at this point that each partially
averaged exciting field will involve the integral of the
exciting field with one additional scatterer held fixed.
Thus one obtains the hierarchy of equations

WE ([T 1, - - r))=y(r)
+f L CAL RN WY ACOIZLCI] £1 SRR )

+Zg TEHWE |t 1+ 1))

n=12---, N—1, (2.13)
where #n(r'|r,ry) is the density of scatterers at r’ if
scatterers are known to be at r; and r,, and so forth.

Three methods can be seen of treating this hierarchy.
First, one can in principle obtain an exact solution by
solving the implicit initial representation Eq. (2.10)
for yE(r|ry; 11,- - - ,kn), inserting the result in the last
equation of the system, and working up from the
bottom. As before, this scheme is discarded because the
labor is prohibitive. Second, one might iterate the
system, replacing the exciting field in the integrand of
one equation by the right-hand side of the following
equation, and continuing to replace the exciting field
wherever it occurs, ultimately obtaining an infinite
series representation for each of the exciting fields which
involves only operations on ¢/»(r). This result expresses
the exciting field in terms of multiple orders of scat-
tering, and could have been obtained more directly
by taking configurational averages of Eq. (2.11), the
multiple orders of scattering starting representation of
the exciting field. Such series rapidly become cumber-
some to treat exactly when more than one or two terms
are considered, so that this scheme is only feasible when
multiple scattering effects are very weak. Finally, Lax
has suggested breaking off the hierarchy at some stage
by arbitrarily replacing the exciting field in an integrand
by the corresponding field with one less scatterer held
fixed.5 The resulting equation is then solved, and each
of the preceding equations solved by quadrature. More
will be said about this procedure later. Further dis-
cussion of the functional behavior of the exciting fields
is also required, but first it is necessary to consider the
total field.

2.3 Averaged Total Field

The expression for the total field is somewhat more
involved than for the exciting field, as it will depend
on whether the point of evaluation falls inside or outside



516

of a scattering region. The computation of the averaged
exciting fields did not depend on the existence of po-
tentials within the scattering regions. However, these
potentials are essential to the computation of the
averaged total field. The viewpoint used is as follows:
If a wave equation exists for the interior of scattering
regions, then a potential is defined in these regions and
the procedure is straightforward. If the interiors of the
scattering regions cannot sustain wave motion, but
may be considered as limiting cases of media which can,
then the computation is carried through with internal
potentials, with the understanding that the appropriate
limiting process be employed subsequently.

If neither of these conditions is fulfilled, it is meaning-
less to speak of the total field. This situation is satis-
factory for our purposes, because any measurement
which did not disturb the ensemble of scatterers would
necessarily be made on a partially averaged exciting
field. That is, in order to guarantee that a measurement
be possible at any particular point, we would have the
alternative of either modifying the ensemble so that
the point in question was never in the interior of a
scatterer, which seems rather unsatisfactory, or agreeing
to measure, say, the first partial average of the exciting
field on a scatterer fixed at the point.

In exact analogy with Eq. (2.9) defining 7'(r;), the
boundary conditions of the single-scatterer problem
may be used to define an internal scattering
operator 77(r;) generating the internal potential
YI(r|x;;11,- - - xx) from the exciting field according to

YI(e|t;; 10,0 ) =TI E (e 1551, - (2.14)

Now the total field at any point is the sum of the
incident and all scattered waves, if the point of interest
lies outside of all scatterers. Inside a scatterer the
appropriate internal field must be employed. In order
to formulate this statement mathematically, the fol-
lowing device is used: let

'7rN)'

0 o “inside”
alg)= { (2.15)

1 o “outside” 0

where ‘“‘p inside 0” means that the point g is in the
interior (or on the boundary) of a scattering region
with “center” at the origin, and “p outside 0” is the
complementary statement. The total field may now be
written

YGln,-- -,rN>=kI]:Il a(e—r,)

X{'//i“c(f)‘l'_}.;.l T (e (x| xj510,0 - - rw)}

(2.16)

1rN)a

+é [l a(r—t) 1T () (e 55y -

and it is readily verified using the definition of a(g)
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that this expression has the required form.* Before
averaging, some simplification is possible. Consider the
identity

1EfI [a(r—r)+1—a(r—rw)]

—H a(r—rk)+§ [1—a(r—r))] }E a(r—ry)
+§# [l—a(@—r)[1—a(r—r)] H a(r—1,)

+-- --l—kI_I1 [(—a(r—r)].

Multiplying through by p(ry,- - -,ry), it is seen that on
the right all terms after the second vanish identically,
since products of the form [1—a(r—r;)] [1—a(r—r1:)]
are zero except when interpenetration occurs, at which
time the joint probability distribution vanishes.
Consequently,

P(rly' ‘ ')rN) kriIla(r—rk)
=p(ry,- - e {l— Z[l a(r— r])]Ha(r )}

7=1

,rN){l—E (1—a(—r)]}, (2.17)

=p(r1’. .

where the second equality follows from the fact that
the (V—1)-termed product contributes no additional
information (seen by employing the identity expansion
again). On placing this last result in Eq. (2.16), the
configurational averaging process is straightforward,
and for the averaged total field there results

W@)=¢™(x)

+ f drn()T@)WE (| )
1 “outside’” ¢’

+ dr'n()[TT (") — 1] (x[r)), (2.18)

r “inside” ¢’

where the statement “r outside r'”’ means, as before,
that integration is to be carried over all points ¥’ such
that r is outside the scatterer having center r'. The
interpretation of this result is as follows: The first two
terms represent the ‘“outside point” contributions to

In many situations the fundamental physical quantity is
proportional to ¢, e.g., in acoustics pressure is given by the product
of Y with density, wh1ch of course may differ for scatterer and
matrix material. We suppose that the tofal field in Eqgs. (2.16)
and (2.18) has been normalized in this sense, according to the
physics of the specific problem of interest. Such normalization of
the exciting field i unnecessary as only the unperturbed matrix
medium is involved.
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the total field arising from those configurations for
which the evaluation point r is external to all scatterers.
The first term in the second integral gives the “inside
point” contributions, and the final term serves to
cancel out the “outside point” contributions as the
likelihood of r being an outside point diminishes.

2.4 Criterion for the Validity of
Approximate Equations

The system of exact equations governing multiple
scattering is now complete, with the averaged total
field given in terms of the exciting field by Eq. (2.18).
Unfortunately, the equations are not at all tractable
in present form, as has been pointed out in Sec. 2.2,
so approximations must be used. One can begin by
expressing the exciting field ¢Z(r|1;; 11, - - ,tx) incident
on the jth scatterer as the total field ¥ (r|ry,---',tx)
that would exist in the neighborhood if the jth scatterer
were not present. The prime signifies that r; and its
effects are omitted in this expression. When the scatterer
is then “inserted” in position, additional terms must be
added to the total field, representing rescattering from
all other scatterers of the radiation from the “inserted”
source T(ry(x|ry,- -’ ;ry), rescattering of the “pri-
mary” scattered waves, and so on. These terms are
included in the present starting representation in the
form of an infinite series of multiple orders of scattering.
It should be stressed that this representation, while
not in closed form, is exact.

Step two consists of interpreting the infinite series
as a sum of singly scattered waves from all other
scatterers, with the role of incident wave played by
the “source” T(r;)y(r|ry:--";ry), propagating in a
scattering medium with complex index of refraction.
To support this interpretation, a crude summation of
the infinite series is given in Appendix I for the simple
case of isotropic point scatterers, using a Fresnel half-
period zone approach in three dimensions. Statistical
fluctuations are neglected in this estimate, as are
correlations in scatterer positions. In the course of the
estimate there is obtained as a by-product the inter-
esting result that the role of the nth—order term in the
multiple orders approach is simply to generate the nth
term in the power series expansion of an exponential
characterizing the modified properties of the scattering
medium. This provides a useful criterion for deter-
mining the feasibility of the multiple orders approach
in specific cases.

Next, returning to the starting representation, the
first term in the infinite series is estimated and shown
to be negligible under a wide range of conditions.
Finally, in the light of the above interpretation of the
infinite series, it is pointed out that the criterion so
obtained cannot be appreciably influenced when the
additional terms of the series are included (equivalent
to saying that if primary scattering of the “inserted”

517

field is negligible, secondary and higher orders must be
even more so).

If we assume that the criterion is satisfied, then we
may replace the exciting field in a frozen configuration
of scatterers by the total field which would exist if the
scatterer in question (and its effects) were removed.
With the aid of this replacement the configurational
averaging process is then readily employed to yield
linear integro-operational equations for the various
field quantities of interest.

On the basis of the above discussion and Appendix
I, the starting (exact) representation for the exciting
field is given by

YE([rs e )=y (xlry, - - rn) + 2 T(r)

k=]
X{14+ ¥ T+ X Tkn) X T(r)
ms£k,j m#Ek nEmM,y
+T 70 T T T Tla)+)

XT (W (|, - ry). (2.19)

Each summation extends over all scatterers except
those noted. In the summation over k (which has been
factored out of the brackets for reasons apparent
shortly), the value j is excluded because we are calcu-
lating the exciting field on the jth scatterer. All other
omitted indices are determined by the simple rule that
the product T'(r»)T(rm) never occurs; physically, the
(n+1)st-order scattered wave is generated by an
exciting field made up of the nth~order scattered waves
from all scatterers but the one in question. The reader
may find it interesting to compare this equation with
Eq. (2.11), the pure multiple orders of scattering
representation. It is not trivial to collapse the series
above to an equivalent implicit form because of the
intermediate role played by the jth scatterer, which
(1) serves as source, (2) does not participate in primary
scattering, and thereupon (3) serves as a scatterer for
secondary and higher orders.

Now for fixed % the series in brackets operating on
xo=T (@) (r|1y,---"xx) is formally just the exciting
field on the kth scatterer generated by an incident wave
xo and all orders of scattering of this incident wave.
If the concept of a scattering medium with modified
index of refraction is to be valid, then the addition of
succeeding terms in the series must effect this modifi-
cation in propagation properties. The manner in which
this transition to a scaffering medium occurs is shown
explicitly (if approximately) for isotropic point scat-
terers in the Appendix.

Assuming the interpretation valid for the moment,
consider the first term, say oo of the series, given by

‘PO(I)EE. T(rk)T(rJ)ll/(rl Iy, ',7rN)'

Each term in the summation represents rescattering
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F16. 1. The half-period zones for an isotropic point source at
r; are concentric spherical shells of thickness A/4. The rescattering
to r; from all scatterers in a given zone will be on the average
equal in magnitude but opposite in sign from the contribution of
the preceding zone.

from one of the obstacles of an outgoing scattered wave
from r;. Furthermore, since the exciting field is only
required in the immediate neighborhood of the scatterer
in question, in this case the jth according to Eq. (2.19),
we need only estimate ¢o(r) in this neighborhood; for
simplicity consider ¢o(r;).

Surfaces of equal phase of the outgoing wave will
be more or less spherical, depending on the degree of
anisotropy of single scattering, so that the phase of
rescattered waves returning to r; will retard roughly
according to the round trip distance 2|r;—r;| from r;
to the individual scatterer. A set of concentric half-
period zones may be constructed about r;, each zone
defined by the requirement that its rescattered waves
are no more than half a period out of phase at r;. These
zones are illustrated in Fig. 1 for the limiting case of
isotropic point scatterers. Suppose there is a uniform
random distribution of density #,; further supposing
the amplitude of the scattered wave to be proportional
to that of the exciting field, one may write

T (rlry,- 1) =f\0]w,

[r—1;]

using the abbreviation ¥;=v¢(r;|ry,- - - ',rx). ¢o(r;) now
becomes

N 2ik P 71
ae)=3 g B2 T ]

[te—r;2

and it is clear that the contributions from succeeding
zones are the same order of magnitude but alternating
in sign, the square law increase of number of scatterers
with distance being precisely compensated by the
inverse behavior of both scattered and rescattered
waves. One concludes that summation over the first
zone should suffice to give an order of magnitude esti-
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mate of ¢o(r;), and further approximating the sum by
an integral we obtain

1st zone 2tk | r— n
O s

i ]rk—r,-P

exp[ 2ik|r’ —r;] ]
~ o f dr’—]l—
1st zone

[r'—r1;]?
= (%ﬂo/lk)fz\b_,.

Thus ¢o(r;) may be neglected in comparison with ¥; in
Eq. (2.19), provided

| (4ano/ik) 2| = (dno/B) | fI2<K1.

Further, since 4n|f|? can be shown to be just the
scattering cross section ), of a single scatterer, the
above criterion simplifies to

(neQs/B)K 1.

This criterion is always satisfied for Rayleigh-type
scattering,'! where the scatterers are spherical obstacles
of radius ¢ with ka<<1. Here the scattering cross section
has order of magnitude Q,~k?® and the maximum
allowable density #o~a=% (at which point the scatterers
fill the entire volume), so the criterion becomes (ka)*«1,
which is automatically satisfied.

Relaxation type behavior is encountered in the
scattering of electromagnetic waves by free electrons
whose motion is damped due to collisions. On employing
results given by Stratton,’? one can show that the single
electron scattering cross section (neglecting radiation
reaction) is given by

8ret 1
0= et [1+4 (wa/w)?]

(2.20)

where wq is an empirical collision frequency, and the
other quantities have their usual meaning. By inspec-
tion, one sees that the criterion of Eq. (2.20) will be
most demanding at a signal frequency w=wy, and
making use also of the expression for static conductivity
oo=1ee?/mwg, one obtains

(16Qu/ ) mex= (47/3) (Ea0/mc) = 3.5X 10~554(mhos/m).

For silver, with go=~6X10” mhos/m,® (7¢Q,/%k) max
=2X 1075 while for a Lorentz gas in general under the
extreme conditions T=108°K, #n,~10* cm=3, we

11 See, for example, the discussion of the Neumann problem in
the low-frequency limit, given by P. M. Morse and H. Feshbach,
Methods of Theoretical Physics (McGraw-Hill Book Company,
Inc., New York, 1953), p. 1484.

2] A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), p. 326; the required expression
for power radiated by an electric dipole may be found on p. 437.
The scattered wave is represented by a Hertz vector having a
single cartesian component whose magnitude is the isotropic
scalar potential appropriate to the present discussion (see p. 432).

13 Reference 12, p. 605.
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obtain* ¢o=4X10° mhos/m, resulting in (#6Qs/%)max
~1073, From these results, it appears that the criterion
is satisfied for those problems involving scattering by
collision damped free electrons, i.e., dispersion in metals,
and electromagnetic wave propagation in partially and
fully ionized gases.

As an example of resonance phenomena, consider the
scattering of sound waves by air bubbles in water. At
the resonance frequency, characterized by an effective
mass of water adjacent to the bubble with restoring
force related to bubble stiffness, the scattering cross
section becomes!® (Q,=4rae?/e%, where a is bubble
radius and e a dimensionless damping constant, in
general frequency dependent, accounting for losses due
to viscosity and nonadiabatic behavior. Defining the
fractional volume of air bubbles by d=4mra*ny/3, and
noting that kresa=[3(p1?) air/ (pv?) water J}, the criterion
becomes, at resonance,

(n’OQs/ k)resonance= (5/ 62)[3 (p‘l’2) water/ (p’l)2) a.il']i
~2.6X102(5/€2).

There is some discrepancy in the literature as to the
magnitude of e at resonance. Morse and Feshbach
suggest that this value is somewhat larger than unity,'s
while MacPherson, for example, gives an experimental
value of order 8X107% based on transmission and
reflection measurements on a bubble screen (two-
dimensional array) in the kilocycle range.!* At any
event, it appears that the criterion may not be satisfied
here even at fractional volumes below 1072, and further
investigation is strongly indicated in this case.

The above estimates have only been concerned with
primary order of the multiple orders of scattering
correction to the exciting field, i.e., the first term of
the infinite series appearing on the right side of Eq.
(2.19). One now infers that the estimate remains valid
when the entire series is considered, because of the
following observations. The infinite series has been
interpreted as generating a modified “scattering
medium” propagation behavior. Physically, it is neces-
sary to restrict the modified propagation constant to
the first quadrant in the complex plane; from the usual
interpretation in terms of phase velocity and attenu-
ation, this restriction simply requires that the modified
scattered wave remain outgoing and have nonnegative
attenuation, i.e., not increase in energy content as it
travels. In the preceding integration over the first zone,
the integral is then modified to extend over a sphere of
radius w[Re(k)+4]%, and % in the exponent is replaced
by (k+%)/2. The reader may easily verify that under
the physical limitations imposed on «, the integral can
be increased by at most a factor of two, and this only

11, Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), p. 83. The values of Table 5.1
for an electron-proton gas have been employed.

15 Reference 11, p. 1499.

18 T. . MacPherson, Proc. Phys. Soc. (London) B70, 85 (1957).
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A\sa —1 |-| |—— A\s4
Fie. 2. The first half- i \
period zone for rescattering
of scattered waves from the
large diameter disk at r;
consists of the two dashed
cylindrical regions of thick-
ness A/4 and radius a.

forword
direction

in the extreme limit x — 0. In simpler terms, Im(x) > 0
corresponds to attenuation of the outgoing wave, which
can only decrease the collective return; Re(x) — O,
which corresponds to very large outgoing phase velocity,
can at most increase the radius of the first zone by a
factor of two, because of the fixed phase velocity of the
return signals.

Consider next the situation near the geometrical
optics limit. In order to obtain an order of magnitude
estimate in this case, it is expedient to neglect diffraction
effects altogether. Suppose the obstacles to be thin
circular disks of radius @ very large in comparison with
wavelength, with disk j, shown in Fig. 2, illuminated
normally by a plane sound wave of amplitude ¥,. The
scattered wave consists of plane waves of amplitude
Ziorwara¥j, gback¥j, Propagating away from the disk in
the forward and back directions, respectively, and
confined to a cylindrical volume with cross section
defined by the disk.

The first zone for rescattering of this wave (to the
center point of disk 7) consists of the cylinders of radius
a extending a distance A/4 upstream and downstream
from the disk, shown dotted in Fig. 2. Consider first
the upstream portion, which is slightly simpler to
analyze. By the methods employed above, with back-
scattered wave given by

Tback (rJ)‘l’jeikz =g back‘l’.ieikl &=l )

we obtain a contribution after one rescattering of

dT’eik[ z’—tj]eikl zj—2'|

Po(ry) = ”ogzback%f

1st (back) zone
= — (wa?nog?back/ kW ;.

This quantity is negligible in comparison with ¢;
provided
| ma*nogPvack/ k| = (wa*neR/ k)1,

where the reflection coefficient R=|gpack|? has been
introduced in accordance with the usual definition.
Noting that ma?R is just power scattered in the back
direction, we must have scattering cross section
Qs,~wa?R (which neglects a factor of perhaps two
because forward-scattered power is not inciuded).
Making this replacement, one finally obtains precisely
the criterion that resulted in the small scatterer limit,

ly,
s (neQ./ B)K1. (2.20)
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We have up to this point only tacitly restricted the
thickness 2o of the disks to be much less than cylinder
diameter so that a simple cylindrical zone picture could
be employed. Suppose now that the disk is many wave-
lengths thick, so that kz,>>>1. The scattering cross
section is at most of order wa?, and #,< (7wa%s0)* from
volume considerations, so

(nQs/ B) < (1/R20) K1

is automatically satisfied. At the other extreme of
disks very thin in comparison with wavelength, one
can readily show that Ry, 500(k20)? provided the disks
are not completely opaque,’” and thus

(1004 ) < B2

is again automatically satisfied. In intermediate cases,
the criterion may be satisfied by suitable combinations
of the three parameters R, #,, and k. The calculations
on the shadow side of the disk proceed in similar fashion
except that the return from the first zone must be
rescattered from r;. When this result is compared with
the primary scattering from r; one again obtains
precisely the criterion of Eq. (2.20). The higher orders
of scattering may be treated in the same manner as
previously. Details of the calculation, not given here,
are somewhat simpler for the cylindrical zone structure.

One is tempted to infer that Eq. (2.20) is a generally
valid criterion for the approximation we desire to make,
although we have obviously not come close to proving
such a statement. Certainly it is appealing in its sim-
plicity, and physically reasonable, requiring that the
fraction of area “blacked out” per unit wavelength due
to scattering cross section be much less than unity.
The practical significance of the criterion lies in the
fact that no limitations are put on the magnitude of
absorption losses associated with the obstacles, so the
theory should be capable of handling problems involving
“lossy” obstacles even when the resulting coherent
field is highly attenuated.

2.5 Approximate Integral Equations

Using the result of the previous section, that the
exciting field on a scatterer may be approximated by
the total field existent in the neighborhood if the
scatterer were not there, it is possible to obtain equa-
tions for the individual quantities of interest. The
simplest case is that of statistically independent
isotropic point scatterers, the problem considered by
Foldy. Since it is not necessary to include the effects
of the interior of the scatterers, the starting repre-
sentation, Eq. (2.16), reduces to

N
Y(r|ry - r) =y (0)+ 2 TN (x|, - - 1y)

N
“'Pinc(rH_E T(W(r|ry,- - xw),

17 For an example in the electromagnetic case, see Sec. 3.3.
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where the exciting field in each term in the summation
has been replaced by the total field with that scatterer
absent.

Taking the configurational average of this equation,

employing the factorization p(xy,- - - ,xx) = p(r)p(re) - * *
() necessary for statistical independence, one has

N
W(D)=¢e(n)+ 2 arip(r)T(x;)
de'rl' o ,dTNP(rly' ’ 'I:rN)‘p(rlrly' o ,7rN)
=yine(r) 4 f drin(r) T (r:)

deTT * 'dTNP(rz" ° ',I'N)lp(l'll'z,' * 'er)'

The (N—1)-fold integral in the last line is independent
of r; and, in fact, is precisely the averaged total field
for the same problem with one less scatterer involved.
As the number of scatterers increases, this quantity
must differ from the total field with N scatterers by
terms of order 1/N, and by making this replacement
one obtains the integral equation

W) =)+ f dr'n(@)T (X))

— e +1 [ arn(e)p @)

(e*=—=I/lr—1'[), (2.21a)

where in the second line the explicit form for the iso-
tropic scattered wave given earlier has been substituted.
Following Foldy, one may operate on Eq. (2.21a) with
the unperturbed Helmholtz operator A+-%% obtaining
because of the Green’s function nature of the kernel
the equivalent differential equation

[A+x2(r) ) (1)) =0,

where the complex propagation factor «(x) is given by
4 fn(r)

2 ]

(2.21b)

K2(r)=k2[1+ (2.22)

This last equation defines the properties of the scai-
lering medium, in which the average field is propagated
with attenuation and modified phase velocity specified
by a complex propagation factor «(r).

By modifying the starting representation at the
beginning of this section so as to represent the exciting
field and following the same procedure, one readily
obtains the simple result

@ (x[r)=W(r)).
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That is, the average exciting field on an isotropic point
scatterer af the scatferer is just equal to the average
total field at the same point, a result that could of
course be obtained more directly from the exciting field
approximation.

Further discussion of the preceding results is deferred
until the following section, and the more difficult
problem of anisotropic finite scattering regions with
correlations in position is considered. We do not attempt
to obtain an integral equation for {(r)) this time,
instead working with the exciting field, from which
(¢(r)) may be obtained by quadrature according to
Eq. (2.18). The exciting field on scatterer 1 is given by

¢E(r!1‘1; Iy, ',IN)%¢(I'II'2,' : 'er)
N
Y3 TN el 1),

where in the second line the internal fields do not
appear because of the exclusion of interpenetration.!®
One proceeds by observing that none of the scattered
waves in the summation depend on r;. By splitting the
joint probability distribution into two terms, the first
of which involves r; only in a simple manner, and
averaging, an integral will result containing
{E(r|t))n—1, the averaged exciting field for the
same problem with N—1 scatterers, plus a correction
term R(r|r;) due purely to statistical correlations in
scatterer positions. As before, it is assumed that
WE(x|))y_a=@E(x|t)y for a sufficiently large
number of scatterers.

The probability distribution required here is
$(rs, + Ty |11), and this may be written

P(l‘z,' ) ',IN]11)=P(1'2|1‘1)P(1'3,' ‘ ')INI 1'2)
'“P(IZI rl)[p(t%' ’ ',I'Nll'z)—*ﬁ(l's,' ’ ',I‘Nll’1,l’2)].

Employing this to average the above expression for the
exciting field, one obtains with no difficulty

W (x| r) () + f dr'n(d | )T (@)PE 1))

—R(r|r), (2.24a)
where
R(rlrl)Efdrzn(rzlrl)T(rz)fdm- -dry
X[p(rs, + - rn | 1) = p(xs, - - ;ry[11,12) ]
XYE(r| 12510, -+ xy).  (2.24b)

The remainder term R(r|r;) is expected to be small
for several reasons. That the term is due to statistical
correlations in position is apparent; if the scatterers
are statistically independent, the two probability
distributions become identical and the integrand

18 That is, the configuration is such that space is available for
scatterer 1 without interpenetration.
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vanishes. R(r|r;) also relies on fluctuations in the
exciting field for its existence. If we approximated
YE(r|rs; 1o, - - xy) by its average value (YZ(r|ry)), this
latter quantity could be taken outside of all integrations
except that over r and because of normalization of
the probability distributions, the remaining (N—2)-
fold integral vanishes.

Ultimately, the limit of statistical independence will
be employed in order to obtain explicit results for those
physical situations where position correlations are
unimportant; nevertheless, it seems appropriate to
comment on some approximate procedures for treating
R(x|ry), to provide a starting point for handling some
of the problems where correlations are an essential
ingredient. The key to simplifying R(r|r,) lies in
rewriting the exciting field in a form where only a few
scatterer positions appear simultaneously, thus making
most of the integrations trivial. One immediately
apparent scheme is the multiple orders of scattering
representation, given in Eq. (2.11). Making this sub-
stitution in Eq. (2.24b), one obtains a series repre-
sentation for R(r|ry), each succeeding term involving
one more integration and higher joint probability
distributions. Evaluation of these terms may then be
feasible, depending of course on the complexity of the
statistics and the rapidity of convergence.

A somewhat simpler method, requiring, however,
an additional assumption, is this: It has already been
observed that only fluctuations in y# are significant in
computing R(r|r;). If one assumes that these fluc-
tuations are predominately due to the variations in
position of individual scatterers relative to the phase
of the averaged exciting field acting on them (thus
neglecting fluctuations in the latter), one is led to try
the self-consistent approximation

N
YE(r[r; 1y - -,rz»r)zti*“”(r)-l-_z3 T(r)@ " (x(r)).
-
On inserting this expression in Eq. (2.24b) there results
R(r|r1)zfd7-’n(r'In)T(r’)fd-r”[n(r”]r’)

—n(r” ¥ r) IT (1)@= (x| 1))

If correlations that are short range relative to wave-
length are being dealt with, so that the difference in
densities vanishes outside of a region of small extent
in comparison with wavelength, then T'(r)}¢Z(x|r""))
may be set equal to T(r){#(r|ry)) and taken outside
the r’ integration. Defining the specific correlation
volume v(r;) by

n(rv(r)=Ldr"[n”’ |Y)—n(" |t r)],
Eq. (2.25) becomes

(2.25)

R(e|r) ~n(eo(r) f (e |t T (@) T@) WP x| 1),
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R(r|r;) is thus negligible in this case. Notice that the
product #(r)v(r))<1 since at the upper limit the
packing has reached the maximum value allowable by
correlations. The integral is of the form evaluated
earlier and shown to be negligible in the course of
obtaining our criterion for approximating the exciting
field. If correlations are not of this short-range nature,
then R(r|r)) must be retained in some form in the
integral equation Eq. (2.24a).

The higher partially averaged exciting fields may be
treated in similar fashion to yield integral equations
analogous to the one obtained for (YZ(r|r)). With
reference to the system of equations (2.13), inspection
of the above procedure indicates the following modifi-
cations: (1) the exciting field within the integral is
replaced by the corresponding field with r, absent;
(2) a remainder term is added containing the appro-
priate higher conditional probabilities; (3) the exciting
fields employed to obtain the summation of fixed
scattered waves are calculated with r; absent, so that
the summation becomes an inhomogeneous term, in-
volving the next lower partial average of the exciting
field.

In closing this discussion, some comments on energy
and measurement seem appropriate. Quantities such as
energy density and energy flux, which are quadratic in
the field amplitudes, must be computed separately,
because the process of averaging cannot be expected to
commute with the nonlinear operation of squaring the
absolute magnitude of a field quantity. The two alter-
native propagation behaviors which can, at least in
principle, be computed to obtain | (r))|? and (|¢(1)|?)
correspond to the values that would be obtained ex-
perimentally employing amplitude-sensitive and energy-
sensitive measuring devices, respectively.

The fundamental approximation ¢Z(r|t;;ry,- - -,tn)
=y(r|ry, - < Y 1ty - - ,ty) derived in Sec. 2.4 is the
relation required for treating the more involved field
quantities related to energy. For example, forming
Y(r)¢*(r,) from the first equation of the present section
and averaging, invoking also Eq. (2.21), one obtains

W > (o)) — P ()@ (x0)
'Lklr—r [e—1k|rc—r’|

——p f dr'n()—— (Y ()2

[r—r'[ [ro—7'|

etklr—r’le——zklro—r”l
—fzfdr fdr”n(r’)n(r”)

[e=r'| [xo—r|
XL W ()= @@ ))e* ()1 (2.26)
This is Foldy’s result for identical isotropic point
scatterers, and by interation techniques is convertible
directly into an integral equation for ([¥(r)|2.t To
obtain Eq. (2.26), Foldy assumed the validity of two
approximations

WE (1|t B (1, | 7)) = (W (e (xy),
WE (|15 1,0 ™ (e | 1 1,00)) = (Y (18 (10)),
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n(,)=5'7f(1)=..,

‘ ‘P'"(z)u

Fic. 3. The geometry of a semi-infinite array of identical
spherical obstacles of radius a. Because interpenetration is ex-
cluded, the exciting field acting on the scatterer at r; can have no
singularities in the shaded region [t—r1| <2a. .

in addition to a previous assumption (W Z (r;| 1;)) = (r;))
needed to obtain an integral equation for (Y(r)). All
three of these approximations follow immediately by
forming the appropriate products from the approxi-
mation above, and averaging.

The “quasi-crystalline” approximation

WE(r|r; 1)) =~ (Y5 (x| 1))

employed by Lax’ is not compatible with the present
formulation. An objection may be raised; from in-
spection of the first two equations, (2.13), it can be
seen that the exciting field with two scatterers fixed
has a singularity located at the second scatterer,
whereas (¢Z(r|r1)) does not. This would seem to deter-
mine a different behavior for the partial wave expansion
coefficients. Perhaps a more significant objection is this:
upon substituting the quasi-crystalline approximation
in the first equation of the hierarchy, Lax obtains the
approximate integral equation Eq. (2.24a) of this
paper with no remainder term. From this it appears
that the quasi-crystalline approximation is equivalent
with the present formulation whenever R(r|r) may
be neglected.

3. HOMOGENEOUS SCATTERING MEDIUM

3.1 Solution of the Integral Equation
for (4F(r[rn))

The goal of the following discussion is to obtain
expressions for the exciting field and propagation
characteristics of a homogeneous scattering medium
wherein averaged field quantities have planar sym-
metry, and scatterers are distributed with constant
density.

An important requirement from the computational
viewpoint is statistical independence. The method of
approaching this limit has mathematical difficulties,
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but the results are physically reasonable ; the anisotropic
point scatterer is a mathematical fiction, and one must
define its behavior carefully. A much less fundamental
simplification is the employment of spherical obstacles
in a geometry in which both exciting and scattered
fields have axial symmetry. Full anisotropy with respect
to the polar direction is retained, however, and the
extension to full azimuthal anisotropy is immediate.
Finally, a discussion of the results is given, in particular
as they relate to earlier theories.

Consider a plane wave normally incident on a semi-
infinite uniform array of spherical obstacles of radius
a, as shown in Fig. 3. Choosing the plane z=0 for the
boundary of the scattering region, the number of
scatterers per unit volume is given by

no (constant) for 220

n(r)={ (3.1a)

0 otherwise.

Restricting the conditional density for the time being
to exclusion of interpenetration, one has

—n(r) for [r—r|—

n(r[rl){ (3.1b)

=0 for |r—r;] < 2a.

In any physical application the difference #(r|r))—#(r)
must be cut off at some finite range.

Fixing attention on the scatterer with center at n,
shown in Fig. 3, the exciting field is given by Eq. (2.24a),

WE (x| )=y (n)+ f dr'n(' | 1) T (X)W 5 (x[ 1))

—R(r|ry). (3.2)

Using partial wave expansions about origin r; to
represent the field quantities, the incident plane wave
exp(¢kz) has the well-known representation

‘binc(r) = gikz1gik(z—21)
=¢*a Y q,7,(k|r—11|)P,[cosf(rt—r11)], (3.3)
n=(0

with expansion coefficients ¢,= (2n+1)(z)*. The j.(x)
and P,(u) are, respectively, spherical Bessel functions
and Legendre polynomials of nth order® @(r—r,),
shown in the figure, is the polar angle formed by the
vector r—r; and the positive z direction.

Because of exclusion of interpenetration, the exciting
field must be a regular solution of the unperturbed
Helmholtz equation for all values of r in the excluded
volume |r—r;| € 2a, shown shaded in Fig. 3. From the
planar symmetry of the problem, {(4F(r|r;)) must
depend on scatterer position only through z;, the z

19 See, for example, reference 11, p. 1574.

% We use the notation adopted by Morse and Feshbach,
reference 11, throughout this Section. All the requisite formulas
may be found in the tabulations following Chaps. 10 and 11 of
the reference.
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component of r;, and, further, must be axially sym-
metric about the z direction in r. The most general
form of the exciting field meeting these requirements is

WFalr)= X 4u(@jnklr—n])

XPy[cosf(r—ry)], (3.4)
where the undetermined expansion coefficients 4 ,(s;)
give the intrinsic dependence of (YZ(r|r;)) on scatterer
position.

In the partial wave formalism, the scattering operator
may be defined by the relation

T(r1)fuk|r—r1|}Pa[cost(r—r11)]

=Buha(k|r—r1|)P.[cosb(x—11)], (3.5)
where by virtue of the radiation condition the scattered
wave represents outgoing radiation.?? The k.(x) are
spherical Hankel functions of the first kind,?® with
superscript omitted because no ambiguity will arise.
The expansion coefficients B, are determined by the
boundary conditions of the specific problem considered,
and are assumed known.

More specifically, in the present notation the scat-
tered radiation generated when a plane wave impinges
on a single scatterer at the origin may be found by
invoking the linearity of 7'(r)) to obtain

T (0)etk== i @Bl (kr) P, (cosf) — f(a)ir, (3.6a)
r

n=0 r—®

where

1 -]
f(0)=— % (2n+1)B,P,(cosh)

3.6b

1k n=0 ( )
and comparison of Eq. (3.6a) with single-scatterer
computations immediately gives the B,. The far-field
scattering amplitude f(f) is the essential parameter
required to specify behavior of the scattering medium,
as will be seen.

Scattering caused by the exciting field is computed
with the scatterer held fixed, so that 7'(r') commutes
with intrinsic dependence on position, giving for a
scattering center at field point r’

TEWH ) =2 4@ Bhklr—r )
X Pi[cosf(r—1")]. (3.7)

2t Two modifications of Eq. (3.5) should be noted. One can
allow azimuthal dependence of the scattered wave, thus employing
the full spherical harmonics on the right-hand side. Because of
the axial symmetry of the problem, however, these additional
terms vanish identically upon performing the azimuthal inte-
gration in Eq. (3.2). Also, for obstacles which do not have spherical
symmetry, an infinite series of partial waves are in general re-
quired on the right side. This modification again causes no irouble;
one simply carries along another summation index in the com-
putation. Physical interpretation of the results in terms of far-
field amplitude of the single obstacle is unchanged.
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Inserting the expressions (3.4), (3.3), (3.7) for the
exciting, incident, and scattered fields, respectively, in
integral equation (3.2), there results

Y [A (o) — ane (k] r— 11 ) PuLcos(r—11)]

n=(

=% B [ a4, Rle—x )

=0

X Pj[cosf(x—1')]. (3.8)
This equation may be simplified by re-expanding the
summation on the right side about the fixed origin ri.
To this end, noting from Fig. 3 that cosf(x—r')
= —cosf(r'—r), we may write

hi(k|r—r'|)P{cosf(x—r')]
= (—1)i;(k|x'—~1|) P;[cosd(r'—1)]

/109 ,
=('L)’Pj(21;'5z—,)ho(k[l‘ l'l) (3.9)

Here the first equality corresponds to rewriting the
partial wave about origin r and follows from the relation
P;j(—u)=(—1)iP;(r). The second equality consists of
a multipole expansion about origin r according to the
expansion rule

19
hj(kf)Pj(COS@) = (—1,)7P,(—; B;)ho (kf) (310)

g

for spherical partial waves.?

The expansion of the zero-order spherical Hankel
function now appearing in Eq. (3.9) in terms of partial
waves about the origin r; is known to be given by®

, S (n+1) ¥ S
hﬁﬂr—fD—zi(" )mweﬁn+mﬂ

Xcos{m[ p(r—r1)— o(r'—11) ]}
X Pm[cosf{r—r1) JP."[cosf (x'—11)]

X jn(klr—01)n(k|t'—11]) (3.11)

2 This expansion has been suggested by B. Van der Pol, Physica
3, 393 (1936), and a proof by induction has been given in an
earlier report upon which the present work is in part based (see
title reference). A somewhat simpler derivation is the following:
J. W. Strutt, Baron Rayleigh, The Theory of Sound (Dover
Publications, New York, 1945), Vol. IT, p. 259, has shown that

onlr) = (—i)"Pn(;l,;% o (r).

Replacing spherical radius 7 by cartesian z, this may be rewritten

() = [(-i)up,,(%k; %)ho (kr)],_,,

and now is interpreted as a boundary condition giving the value
of the function in brackets along the z axis. Noting that the
function in question is a solution of the wave equation with axial
symmetry, and employing the boundary condition, the multipole
expansion (3.10) follows immediately.

2 Reference 11, p. 1466.
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for [r—ri| <|r'—r1.], where e=1, en=2 for m=1, 2,
-++. The P,™(u) are the associated Legendre functions,
and the notation on angles follows that employed
previously. Because of the exclusion of the shaded
region in Fig. 3 from the range of integration in Eq.
(3.8), this expansion is valid within the integral pro-
vided r is in the neighborhood of the scatterer under
examination, i.e., provided [r—r;| <2a.

The advantage of restricting the problem to axial
symmetry now becomes apparent. When Eq. (3.11) is
inserted in the volume integral of Eq. (3.8) and the
integration over azimuthal angle ¢(r'—r;) performed,
all the terms in cos[me(r'—r;)] will vanish identically
except those for which m=0. Thus, substituting Egs.
(3.9) and (3.11) in (3.8) and interchanging orders of
summation and integration, the last may be rewritten
in the considerably simpler and more compact form

i;o Jn(k|t—11]) P.[cosf (r—rl):]{ A (21) — anei*a

—a, i (i)fijdr'n(l"lI'I)AJ'(Z,)PJ'(;;%)

=0

1 0
xP,.(—.——)ho(klr’—rll)}=—R(fll'l)- (3.12)
ik 97’

Here we have employed the multipole expansion (3.10)
again, this time about r, as origin, and noted that the
complex conjugate plane wave expansion coefficients
are given by a,*= (—4)*(2n-+1).

Equation (3.12) may be developed further by the
assumption of reasonably simple statistical correlations
and an explicit form for the remainder term and ex-
pansion functions 4;(z"). The results appear hopelessly
difficult to untangle, however, and so the alternative
procedure is suggested of going to the limit of statisti-
cally independent point scatterers. This approach may
be regarded as yielding the zero-order result in an
expansion in which statistical correlations provide the
perturbation. The advantages of this approach are
twofold: first, R(r|r;) vanishes in the limit; second,
from the resulting integrated equations the expansion
functions 4,(z") may be determined exactly.

This limit is taken in two steps. First, imagine finite
scattering regions replaced by point scatterers with,
however, unchanged scattering behavior. The scattered
wave in what was formerly the interior of a scattering
region is readily defined by analytic continuation; it is
thus a regular solution of the unperturbed Helmholtz
equation everywhere but at the point where the scat-
terer is located, where it has a high but finite order
singularity. Keeping the conditional density unchanged,
the length 2¢ appearing in Eq. (3.1b), formerly a
quantity requiredto exclude interpenetration, now
plays the role of a “distance of closest approach” for
point scatterers.
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The procedure up to this point really only amounts
to renaming a few quantities, since Eq. (3.12) is un-
changed. Now, however, it is desired to let the distance
of closest approach go to zero. In order to do this,
one first extends the definition of the exciting field.
(E(r| r1)) has been defined so as to be a regular solution
of the unperturbed Helmholtz equation with respect
to r in the annular region ¢< |r—r;| < 24. In order to
let ¢ — 0 without losing the dual functional nature of
($E(r|r1)), simply extend the definition into all space
by analytic continuation according to the unperturbed
Helmholtz equation. All the equations are formally
unchanged by this process. Now consider the limit
n(t'|r1) — n(r’) in Eq. (3.12). R(x|1,) vanishes identi-
cally. The volume integrations are extended over the
entire half-space 2’20, with the exception of points in
the immediate neighborhood of singularities at ry,
which must be temporarily excluded in order that the
integrals be properly defined. The operation of ex-
cluding a volume (to be specified shortly) containing
the singular point r, until after integration, then letting
it go to zero, is denoted by script ®(r1) in front of the
integral sign.

With these considerations in mind, Eq. (3.12) now
goes in the limit to

n=0

i Jn(k|r—11])P[cosh(r— rl)]l A (21)— aneit

—a* Y GYBO(r) f dr'n(t)4; ()P (i i)

=0 s’

19
XP,.(— ———)ho(k [¥'—11]) ] =0. (3.13)
ik 82’

Notice that the r dependence of the original equation
has been separated out into partial wave solutions of the
unperturbed medium equation. If Eq. (3.13) is to be
valid for all r, then by virtue of the orthogonality of the
P,[cosf(r—r1)] the term in brackets must vanish for
each value of », giving the set of reduced equations

A ,,(zl) =g,e*a

ot = B [ dr'n(r’)A,-(zon(i i)

=0 oz’
19

XPn(——-)ho(k]r’——rll); n=0,1,2,---. (3.14)
ik 97

At this point the functional behavior of the exciting
field with respect to r is assumed to be unchanged as
the scatterer is moved further into the medium, the
intrinsic behavior of each of the partial waves with
position being characterized by the common function
exp(ixz1). k, at present undetermined, will serve as a
propagation constant for the scalfering medium, its
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real and imaginary parts related to modified phase
velocity and {attenuation, respectively, in the usual
manner.?

Thus, incorporating the plane wave expansion co-
efficients @, into redefined A.(z;) for convenience,
consider the trial functions

An(21)=and Do,

Substitution of these expressions into the preceding
equations gives a coupled set of integral equations for
exp(ixz;) and the 4,9,

(3.15)

A= ibat T (=1)in(2j+1)Bid, Min(z), (3.16)
i=0
where for brevity we have written the integrals

1 0
Ijn(Z1)EG)(rl)de’n(r,)ei"’Pj(— ——)
ik 07

1 8
XPn(zl—z-g)ho(klr—ni). (3.17)

The generalized principal value indicated by the
operator ®(r;) must now be specified. Notice first that
the kernel P;(8/ik92")P,(9/ikz Yho(k|r'—11|) has a
singularity of order (j-+#+1) at r;. The kernel consists
of a sum of axial derivatives up to order j+#» of the
source function appropriate to the unperturbed me-
dium. Because of the behavior in the neighborhood of
r1, this point must be approached with caution. There
are several possible excluded volumes for which the
integrations indicated in Eq. (3.17) may be carried
out without difficulty (e.g., sphere of radius |r'—r;|
= ¢— 0, thin circular disk of arbitrarily small but fixed
radius with thickness |z'—z1|=¢—0, thin circular
rod parallel to the z; axis with fixed length and radius —
0). Each of these choices gives rise to a different solution
of Eq. (3.16), as the reader may verify by straight-
forward computations (in the deleted sphere case
particularly it is convenient to convert to surface
integrals by means of Green’s theorem). We are thus
confronted with the problem of determining the
“correct” volume to exclude.

Fortunately there is one additional physical require-
ment that must be met by (YZ(r|r1)), that of differ-
entiability with respect to r, which will specify the
appropriate manner for taking the principal value.
Before passing to the limit of statistical independence,
the exciting field was a well-behaved solution of the
unperturbed medium equation. In particular, any
desired number of differentiations with respect to the
r coordinates could be taken inside the integral sign,
and this commutation with the integration is just the
requirement for commutation of the corresponding
operation with the averaging process. Thus for example,

# The physical interpretation of « will be established later.
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applying the gradient operator to the exciting field as
given by Eq. (2.24a) or (2.12), it is seen immediately

that
VW E (x| 10))y=(VE (x| 11)).

Here scatterer position t; is held fixed, and (VW¥(r|1,))
is defined by computing the gradient of the exciting
field before averaging, starting from Eq. (2.10).

The commutation of gradient and averaging process
stated in Eq. (3.18) is an important requirement, since
the response of a scatterer will depend in general on
the gradient of the exciting field as well as the field
itself. Does Eq. (3.18) hold in the present case, where
the exciting field has been analytically continued outside
of the region of no singularities? One finds that it does,
provided the principal value is taken by excluding a
thin circular disk of thickness |3'—z;|=¢— 0. I the
principal value is taken by deleting a small sphere

(3.18)

21—€ 0
I;n(21)=27m0 lim{ f dz'+ ds' }e“‘" ( ) ( ) f
=0, z1te ik 93’ ik 37

o 19
=2mno liml f a7’ + dz' }e““ P; )
0 0 z1te 'Lk (')z

2mng

19
2(=—
ik 07 k2

21 2mhg ©
f dz’eiu’(_ l)j—l—neik(zl—z') +___ f dZ’eixz’(+1)J'+ne—ik(zl—z’)
0 kZ z1

— Zrno(— 1)1‘+n
ptkz1
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centered at ry, then the gradient of the averaged exciting
field and the average of the gradient of the exciting
field are in general unequal, i.e., Eq. (3.18) is not valid,
except in the special case treated earlier of isotropic
scatterers, where there is actually no need to employ
principal values (because the 1/r singularity is ade-
quately restrained by a factor #2 in the volume element).
Computations on which the above remarks are based
are straightforward but extremely lengthy, and for this
reason they are not presented here.

Equations (3.17) may now be integrated. Choos-
ing cylindrical coordinates (p')2=|t'—r;|2— (s'—3z,)?,

=o(r'—r1), 5’=2' for the integration, the ¢’ inte-
gration only introduces a multiplying factor of 2.
Upon further noticing that the entire infinite slab
|z’—21| < e may be omitted from the range of inte-
gration, since the portion beyond the disk p’= constant
will contribute nothing in the limit e — 0, we have

' exp{ak[ (") (z:—2)?]%}
k[ (o")2+ (21— 2")2 ]t

eikl 2'—z1)

Here in the second step the finitely oscillating portion
of the p’ integration has been discarded, invoking the
usual arguments.?> The following step comes from
the observation that P,(8/1kd%") exp(z=ikz’)=P.(Z1)
X exp (kz") = (£1)" exp(Ziks’). Convergence of the
second 7' integration is ensured if x has a positive
imaginary part, corresponding to attenuation in the
scattering medium.

Substituting the final expression (3.19) for I;a(21)
in Eq. (3.16) results in an equation containing four
terms, two representing waves propagating according
to the unperturbed medium equation, two propagating
in the modified scattering medium ; mathematically each
pair must cancel separately if the equation is to be
satisfied.

Consider first the pair corresponding to wave motion
in the unperturbed medium. The vanishing of the
coefficient of exp(ikz;) requires physically that the
original incident wave is exactly cancelled by waves
generated by scatterers situated at the boundary plane
z=0 of the scattering region. That these are the only
scatterers involved is immediately apparent if one

% Endowing the matrix medium with a small attenuation which
one then lets go to zero after integration.

i(k—R)R? k?

eile.

deme( (—1)Hn 1
n{( ) (3.19)

i(k—k) i(k+Ek)

rewrites Eq. (3.17) in terms of surface integrals by
means of a Green’s theorem. The statement that the
incident wave is cancelled by waves generated at the
boundary is known as the extinction theorem; it was
first given by Ewald in 1912 in connection with optical
dispersion.?® As a consequence of the theorem, one
obtains in the present case the interesting result

k=k=+ (2rno/k)F(0), (3.20)

where F(0) is the forward-scattered amplitude with
multiple scattering effects included, given by

1
FO)=— Y (2j+1)4B;.

1k i=0

(3.21)

The intrinsic dependence on scatterer position has been
normalized out in the definition of F(6); from Egs.
(3.7), (3.15), utilizing the asymptotic form of the Hankel
functions for large argument, one has

26 P. P. Ewald (dissertation, Miinchen, 1912); Ann. Physik 49,
1 (1916), considered the crystalline case. Isotroplc media were
considered by C. W. Oseen, Ann. Physik 48, 1 (1915). For a
modern account, see M. Born and E. Wolf, Prmm.ples of Optics
(Pergamon Press, New York, 1959), p. 99.
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gikl—r']

—
le=c’l=% ikl y—7p' |

e T PP (| Y)

eik[r—r’[

XY (2 j+1)A,'°BjP,-(cos0)=F(0)I —. (3.22)
=0 r—r

The physical interpretation of Eq. (3.20), giving the
modified propagation behavior in terms of forward-
scattered amplitude, is as follows: The mechanism by
which the scatterer modifies the behavior of the exciting
field is simply interference of the scattered wave with the
main beam, producing a shadow. Because the relative
phase of the two waves is continuously changing in all
other directions, this interference is only significant in
the forward direction.?’

Equation (3.20) remains valid when statistical
correlations are considered. Referring back to Eq.(3.12),
the conditional density #(r'|r;) may be rewritten as
the sum of the ordinary density #(r) and the corre-
lation density #(r’|r)—=(t'). If the field point r; is
situated sufficiently far within the medium that the
correlation density is negligible at the boundary plane
z'=0, then the integrals involving #(r'|r,)—=(r') will
generate modified fields propagating according to the
scattering medium behavior. Similar remarks apply to
the remainder term [see, for example, Eq. (2.25)]. Now
the integrals containing #(t') may be converted by
Green’s theorem, using the trial functions (3.15), and
application of the extinction theorem immediately gives
Eq. (3.20).

It is perhaps curious that this fundamental relation
between forward-scattering amplitude and modified
medium behavior was not noticed in some of the earlier
work on dispersion of light. The omission was probably
due to the fact that the modified dielectric constant
could be obtained more directly by virtue of the
basically isotropic nature of the scattering. Neglecting
the additional complications required for the Lorentz-
Lorenz corrections,® the situation is exactly analogous
to the procedure followed by Foldy and mentioned
earlier for the special case of isotropic point scatterers,
where we obtained the propagation factor «(r) in Eq.
(2.22). It was not necessary to consider either the
exciting field or the far-field amplitude F(6) explicitly,
simply because it was possible to formulate an integral
equation for the total field (¢ (r)) directly.

On arriving at the extinction theorem, pause for a
moment to consider the total field (¢(r)). It has been
established that (¢(r)) is obtained from the exciting
field by quadrature, according to Eq. (2.18). Comparing
the first two terms on the right-hand side of Eq. (2.18)
with the corresponding terms in the integral equation
(3.2) for (Y%(r|r1)), it may be seen that the extinction

2" This is precisely the physical basis for the theorem relating
forward-scattered amplitude to total scattering cross section in
the single scatterer case, as has been pointed out by M. Lax, Phys,
Rev. 78, 306 (1950).
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theorem will serve to exactly cancel the contribution of
¥»¢(r) to the total field. A factor exp(#kz) may be taken
out of the remaining surface and volume integrals,
reducing the integrals to constants independent of
position. We conclude that the total field must have the
form

(¢ (2))=const X e™*?,

and based on this comment the interpretation of « as
the propagation constant appropriate to the scaftering
medium is established. It should be stressed that bulk
properties are being dealt with here; the interpretation
of x and the forward-amplitude theorem (3.20) break
down as soon as one gets sufficiently close to the surface
that #(x’|r))—n(r’) is appreciable there.

Returning to the computation in progress, the ex-
citing field and modified propagation constant finally
are obtained in their dependence on the known single
scatterer behavior by equating the coefficient of
exp(éxz;), the remaining term in Eq. (3.16), to zero.
Physically this corresponds to the statement that the
exciting field is made up entirely of contributions from
scatterers in the immediate neighborhood of the field
point (again in light of transformation from volume to
surface integrals by Green’s formula). Utilizing the
forward-scattered amplitude theorem (3.20) to effect
some simplification, there results

27!'110(—1)" e .
A0=1—— 3 (—1)i(2j+1)BAS;
ik (k+-Fk) =0
n=0,1,2, ---. (3.23)

The implicit nature of these relations, giving the
A% in terms of themselves, is of course just the mani-
festation of the implicitness inherent in multiple scat-
tering computations; we have observed this twice
before, once in the implicit starting representation
(2.10) for a frozen configuration and again in the
integral equation (2.24a) for the averaged exciting
field. There is an important advantage, however.
Equations (3.23) may be inverted immediately to
obtain the expansion coefficients in terms of « and the
known far-field amplitude f(#) appropriate to the single-
scatterer problem. One may iterate Egs. (3.23) in-
definitely and collapse the resulting series, or alter-
natively and more simply, iterate once and eliminate
the unknown summation, which reappears intact,
between the resulting and original equations.

Following the latter procedure and noting that the
residual series are simply the forward and backscattered
amplitudes f(0) and f(w), respectively, of the single-
scatterer problem, one obtains

2ano(—1)"f(x) .

At=1— ;
k(k+k)+2mn01(0)

=0,1,2, ---, (3.24a)

where, in accordance with Eq. (3.6b), the single-
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scatterer amplitudes are given by

JO=(1/iB) 3 @n+1B,

f@)= (1/ik) é) (—1)"(2n+1)B,.  (3.24b)

Substitution of Eqgs. (3.24a, b) in the forward
amplitude theorem (3.20) and rearrangement of some
terms yields the expression

% 2rn0f(0) P [2wmof(m))?
(_) =[1+ J( )]_[ of ( )]' (3.25)

k E k?
This is the central result of the computation: The
behavior of the scattering medium, characterized by the
complex propagation comstant x, may be specified ex-
plicitly in terms of the number of scaiterers per umit
volume and the far field amplitude f(6) oblained for a
single scatterer.

The exciting field may be obtained by substituting
Egs. (3.24a) and (3.15) in the partial wave expansion
(3.4). By comparison with the plane wave expansion
(3.3), note that the first term on the right-hand side
of Eq. (3.24a) generates the expansion coefficients of a
forward-traveling plane wave, while the second term
corresponds to the coefficients of a back-traveling
plane wave. Thus one obtains for the exciting field the
expression

<¢E<r|r1>>=<¢E<z|z1>>=eikn{e«'k<*-ﬂ>

3 2angf(m)
k(k+k)4-2mnof(0)

¢ikG—e ] (3.26)

The exciting field (¢ (z]21)) acting on a scatterer fixed
at 2 is the sum of forward- and back-traveling plane
waves, generated by scatterers situated in front of and
behind z, respectively. Both these waves propagate
as if in the unperturbed medium, as expected. The
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Fic. 4. The exciting field acting on a scatterer at z, consists of
two plane waves propagating in the forward and back direction.
At a station z,” further in the medium both waves are still present
in the same proportion and same relative phase, but with di-
minished amplitude.

——
forward direction
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intrinsic dependence of the waves on scatterer position
is given by the term exp(ixz;) ; as the scatterer is moved
further into the medium, both plane waves exhibit
periodic variation in phase and are, in general, at-
tenuated. The situation is indicated schematically in
Fig. 4. The field exciting a scatterer at z; consists of the
two plane waves shown, while at the later station z’
both plane waves are still present in the same pro-
portion and same relative phase, but with decreased
amplitude.

A detailed physical picture of the role played by the
individual scatterer in generating the intrinsic behavior
of the exciting field is now apparent. The scattered
radiation in the forward direction combines with the
forward wave of the exciting field so as to produce on
the average a slight modification in phase and ampli-
tude. The net result of these modifications is described
by the propagation constant x. A similar situation
occurs in the back direction, the major difference being
that the amplitude of the back wave is increased, as is
readily seen from Fig. 4.

In terms of energy considerations, one can say
roughly the following : T4e scatlerer serves to remove some
energy from the forward wave; part of this energy is
dissipated within the scatterer iiself, depending on the
absorption mechanisms present, and another portion 1s
transferred to the back wave. This comment, while not a
rigorous statement of energy balance,® may help to
provide an explanation of the apparently paradoxical
result that the averaged field may suffer attenuation
even though there are no true loss mechanisms present.

The remainder of this section will be devoted to a
discussion of propagation behavior in the scattering
medium under certain restrictions. Consider first the
case of weak scattering density, defined by the require-
ment |nof(0)/k?|<<1. This situation arises physically
whenever the number of scatterers per unit volume is
sufficiently small, or the individual scatterer is a weak
perturbation on the matrix medium. Neglecting terms
in Eq. (3.25) that are quadratic in the scattering density
nof(8)/k2, there results

(k/ k)=~ 1+[2mne f(0)/R2].

This result may be obtained by the “thin slab” approxi-
mation discussed by Fermi®” and later extended to
anisotropic scattering by Lax.’ Equation (3.27) is also
equivalent to Eq. (A4), the result obtained by sum-
mation of multiple orders of scattering, for the special
case of isotropic scattering.

Making use of the forward amplitude theorem re-
lating extinction (i.e., scattering plus absorption) cross

(3.27)

28 The rigorous statement of energy balance is obtained exactly
as in the case of a single scatterer by computing the net flux due
to the exciting and scattered fields through a closed surface con-
taining one scatterer.

® E. Fermi, Nuclear Physics (University of Chicago Press,
Chicago, Illinois, 1950), p. 201, revised edition (notes by J. Orear,
A. Rosefeld, and R. Schluter).
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section Qex to the imaginary part of the forward scat-
tered amplitude by?’

QexEQscat+Qabs= (%/k) Imf(O),

we may rewrite the preceding equation in the form

" DQex

K 27mn 1
—~14+——Ref(0)+——. (3.28)
k 3 2k

Thus, in the approximation of weak scattering density,
modified phase velocity is determined by the real part
of the forward-scattered amplitude of the single-
scatterer problem; fractional energy loss per unit
volume is given simply by single-scatterer total cross
section per unit volume. This establishes the rule of
additive behavior of cross sections.®

If, on the other hand, one is concerned with isotropic
scatterers, Eq. (3.25) becomes, noting that f(0)

= f(m)=/, say,

(x/k)=[1+ (danof/ BT (3.29)

This is just the result obtained by Foldy,* given
previously in Eq. (2.22), for the homogeneous case.
It has been employed by Carstensen and Foldy®! and
several other workers® to describe scattering of sound
by resonant air bubbles in water, and experimental
results are for the most part in good agreement with
those predicted. As mentioned previously, Eq. (3.29)
also governs dispersion of transverse electromagnetic
radiation in metals and homogeneous plasmas (al-
though not dielectrics because of the complications
involved in Lorentz-Lorenz corrections).

In addition to providing a marriage between the two
formerly separate bodies of theory expressed in Egs.
(3.28) and (29) and indicating their range of appli-
cability, our present results have penetrated more
deeply into the detailed nature of multiple scattering
interactions to provide a rational basis for the discussion
of questions of energy balance—or alternatively in
quantum-mechanical problems conservation of number
of particles. Ekstein, for example, has criticized the
radiation condition on the basis of apparent non-
conservation of particles.®® While the problem of out-
going versus standing-wave boundary conditions has
not been resolved here, the dual plane-wave nature of
the exciting field may provide a quite reasonable

#® Employed in discussing neutron diffraction in crystals by O.
Halpern, M. Hamermesh, and M. H. Johnson, Phys. Rev. 59,
981 (1941). For an application in acoustics, see P. S. Epstein and
R. R. Carhart, J. Acoust. Soc. Am. 25, 553 (1953).

31 E. L. Carstensen and L. L. Foldy, J. Acoust. Soc. Am. 19,
481 (1947).

# See reference 16. Also, E. Silberman, J. Acoust. Soc. Am. 29,
925 (1957); F. E. Fox, S. R. Curley and G. S. Larson, #bid. 27,
534 (1955); E. Meyer and E. Skudrzyk, Acustica 3, 434 (1953).
The case of particle suspensions in water has been investigated
by R. J. Urick and W. S. Ament, J. Acoust. Soc. Am. 21, 115
(1949). They present an interesting alternate derivation of Eq.
(3.25) above.

3 H. Ekstein, Phys. Rev. 89, 490 (1953).
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physical explanation of any apparent energy inbalance
or nonconservation of particles associated with the
total field.

It seems appropriate to comment on Lax’s results.’
He obtains for the complex propagation constant, using
our notation insofar as possible,

(-

Here f(x,x) is the forward-scattered amplitude as-
sociated with a single scatterer embedded in the scattering
medium; ¢ is an undetermined constant, assumed near
unity, expressing the ratio of exciting field to total field.
Notice that Lax’s expression will reduce to Eq. (3.27)
in the limit of weak scattering density, taking ¢=1. It
could also be made compatible with the isotropic
result of Eq. (3.27) by the device of choosmg c=f (O)/
Sf(x,%). It appears inadequate, however, in comparison
with the present result (3.25), in failing to indicate the
important role played by back-scattered amplitude.
We would criticize his assumption of proportionality
between the exciting and total fields, which amounts
to discarding the dual functional nature of the exciting
field entirely, with consequent loss of essential
information.

(3.30)

3.2 Multiple Scattering in the Rayleigh Limit

It is worthwhile to consider some simple examples at
high- and low-frequency limits, where one can obtain
analytical results, as opposed to involved series ex-
pressions, without difficulty. As a result of these con-
siderations, it will be seen that whenever the single
scatterer is equivalent to a proper perturbation on the
bulk properties of the medium, in a sense to be dis-
cussed, the description of propagation in the scattering
medium by Eq. (3.25) is adequate even in the limit
where scatterers are close packed so as to completely
fill the available volume. In addition to building further
confidence in the theory, we demonstrate that it can
reasonably be expected to apply in a variety of prob-
lems where such close packing is a requirement. The
polycrystalline solid represents an important example
of such problems. Because of elastic anisotropy,
individual single-crystal grains scatter acoustic waves;
the problem of acoustic wave propagation in poly-
crystals is thus a case of multiple scattering where by
definition the scalterers occupy the entire volume. Similar
remarks apply to electromagnetic propagation in poly-
crystalline dielectrics whose structure has lower than
cubic symmetry.

In the following discussion some examples from
acoustics are considered in the low-frequency limit.
The scatterers might be oil bubbles or (nonresonant)
air bubbles in water, for example. We represent the
single scatterer by a sphere of radius a, shown in Fig.
5, having density p’ and propagation constant &’
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F1c. 5. The single
spherical scatterer in
theacousticexample.
Density and propa-
gation constant ap-
propriate to obstacle
and supporting ma-
trix are shown.

* o

\

distinct from the parameters p, & of the matrix medium
alone. From physical considerations, one obtains the
boundary conditions that pressure and normal com-
ponent of particle motion are continuous across the
bubble surface.

We further suppose the frequency is low enough that
individual bubbles are very small in comparison with
wavelength, so that the product ke is negligible com-
pared with unity. Under these conditions Rayleigh has
shown that only the first two terms in the series (3.24b)
for the far-field amplitude are important. The ex-
pansion coefficients for isotropic and dipole radiation,
respectively, become®

i(ka)®[ (k'/k)?
3 Lo/e
i(ka)’[ p'—p

3 ,p+2p']'

It is convenient to introduce the fractional volume of
bubbles 8, defined as

0=

(3.31)

1=

(3.32)

Inserting the preceding relations in Eqgs. (3.24b) and
(3.25), the propagation constant x for the “bubbly”
medium is obtained in the form

% (®'/R)? o’=p
(—) ={1+6[ —1]H1+38[ ]j (3.33)
k o'/p p+2o
Suppose first that phase velocities and densities are
equal inside and outside the bubbles, but that the
presence of some dissipation mechanism gives rise to
an attenuation o’ in the bubble material. In this case,
substituting p’=p, ¥’=%+1c’ in Eq. (3.33), the complex
index of refraction of the bubbly medium becomes

x/k=[1—8(c'/k)*+2ida’ /k . (3.34)

The phase velocity and attenuation associated with the
bubbly medium are given in the usual manner by the
real and imaginary parts of the expression on the
right-hand side of Eq. (3.34); it is interesting to note
that in general the phase velocity in the bubbly
medium is altered even though the phase velocity was
everywhere constant before averaging over configu-

d=4%mra*no.

# See reference 22, p. 283.
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rations of bubbles. Note also that attenuation in the
bubbly medium is not simply proportional to a’.

Both effects are of course due to multiple scattering
interactions and disappear at sufficiently low fractional
volumes; if 8 is neglected in comparison with unity in
the real and imaginary parts of Eq. (3.34) separately,
there results

k=k+ida’; 8K1. (3.34a)

In this limit phase velocity is unchanged, while at-
tenuation in the bubbly medium is simply the attenu-
ation within the bubbles weighted by the fractional
volume of bubbles. The latter statement is merely a
rephrasing of the additive rule for total cross sections
mentioned following Eq. (3.28).

Equation (3.34) should also be examined at high
fractional volumes of bubbles. In the light of obser-
vations made by Rayleigh®® one can infer that obstacles
of small extent in comparison with wavelength generate
a response proportional to their volume and independent
of their shape. Thus in the present instance we can
replace spherical bubbles by cubes of the same volume,
for example, without changing their scattering response;
having done this, it is then permissible to close pack the
bubbles up to the limit §=1, which corresponds to
complete replacement of the unperturbed medium by
bubbles. Equation (3.34) becomes

k=k+tia'=k'; 8=1, (3.34b)

and the bubbly medium behaves in this limit like a
homogeneous medium composed of the bubble material.
Equation (3.34b) by itself is not a surprising result;
what is interesting is the inference that the original
Eq. (3.34) is valid in this example for all physically
allowable fractional volumes.

Now consider the situation with no intrinsic losses.
Introducing the elastic moduli or reciprocal compressi-
bilities M, M’ related to phase velocities by v= (M /p)?,
v'=(M'/p")}, Eq. (3.33) may be written

O] oo

Here 7 is phase velocity in the bubbly medium, defined
by the relation k=w/% whenever « is real.® The terms
in the first bracket represent simply the volume
averaged compressibility. The terms in the second
bracket are not so readily interpretable; it will be
helpful to first consider the approximate behavior as
p’ — p. If the reader neglects the second-order terms
in the density difference, he may verify that Eq. (3.35)
yields the remarkably simple result

5 — (M/p),

p’—p

(3.35a)

35 See reference 22, p. 149.

3 We note that for certain values of densities x may become
imaginary, in which case the right-hand side of Eq. (3.35) is
related instead to attenuation.
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where the volume averaged compressibilities and
densities are given by

1/M = (1—8)/M+8/M’'
5= (1—38)p+3p'. (3.35b)

In other words, in this limit phase velocity in the bubbly
medium is expressed in the usual manner provided ome
employs the composition-averaged values of the appro-
priate parameters. This result was suggested by Wood*”
to describe the case of air bubbles in sea water, an
example where Eq. (3.35a) is not valid according to
the present theory, incidentally, because of the large
disparity in densities.

The present concern is with showing the adequacy
of the general description (3.25) of the scattering
medium in the limit of large fractional volume of
scatterers. The result (3.35) is not very helpful in this
regard because of the involved manner in which it
depends on densities. It turns out that consideration
of a more difficult example will yield simpler results.

The failure of Eq. (3.35) to yield a simple description
of propagation in the bubbly medium may be seen by
examination of the single-scatterer boundary conditions.
Recall that the normal components of particle displace-
ment across the bubble surface are required to be con-
tinuous; no analogous requirement is imposed on the
tangential components, with the result that they
become discontinuous as soon as density disparities
are introduced [if one then lets o’ — p, discontinuities
become small in comparison with the displacement
themselves, permitting the simpler behavior (3.35a)7].
In short, Eq. (3.35) describes a wave motion riddied
with discontinuous particle displacements.

This difficulty may be eliminated by considering
instead the problem of scattering by an array of solid
elastic spheres embedded in a homogeneous isotropic
elastic solid. Because the solid media can support
shearing stresses, one must include in addition to the
previous parameters the shear moduli G, G’ of matrix
and scatterer material, respectively. The single scat-
terer is illustrated in Fig. 6, which also indicates the
bulk parameters appropriate to each medium.

The single-scatterer problem has been considered in
detail by Ying and Truell.3® Briefly, the boundary
conditions require the wecfor surface tractions and
particle displacements to be continuous across the
interface between the two media, thus eliminating the
difficulty encountered in the fluid case. To satisfy these
conditions in the presence of an incident plane longi-
tudinal wave, four additional waves must be introduced ;
scattered compressional (irrotational) and transverse

31 A. B. Wood, A Texthook of Sound (G. Bell and Sons, London,
England, 1957), p. 361.

8 C. F. Ying and R. Truell, J. Appl. Phys. 27, 1086 (1956).
Because of differences in notation, the expansion coefficients A,
obtained in this reference must be converted for present use by
the relation B,= (—2)"*1k4,,*/(2n+1). We have also corrected
the sign of A.; in the reference.
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F16. 6. The single elastic obstacle of radius ¢, showing the densities
and bulk moduli appropriate to obstacle and matrix material.

(solenoidal) waves in the region r > a outside the scatter,
and a corresponding pair inside the scatterer.

Fortunately the phenomenon of mode conversion, the
generation of transverse scattered waves by a longi-
tudinal incident wave, will not materially affect the
present discussion, as we may see by a simple symmetry
argument. In the limiting case of point scatterers which
we have employed, the exciting field has planar sym-
metry. Any transverse components of the exciting field
must thus be plane waves propagating in the forward
and back directions, each with an associated polari-
zation normal to the forward direction, defining the
direction of particle displacement. But the problem
has complete axial symmetry about the forward
direction, so there can be no preferred polarization
direction. We conclude there can be no transverse
components of the exciting field. The transverse modes
are self-extinguishing in the sense that they never
appear in the exciting field, even though they are being
generated at all scattering sites. For this reason it is
permissible to represent the exciting field by a single
scalar potential. Similarly a single scalar potential is
sufficient to represent that portion of the scattered
wave which will not vanish identically upon integrating
over scattering sites, so the formal procedure employed
to obtain (¢#(z|21)) carries through without requiring
extensions.

By inspection of the results obtained by Ying and
Truell, we find that the first three expansion coefficients
are significant in the low-frequency limit, and these
are given by, dropping terms of order (ka)? in compari-
son with unity,’

i(ka)3'4(G’—G)—3(M’-M)]
"3 | sM—4G—-0)

1=

9 L o

i(ka)® 'p'—p]

44 (ka)al‘ G(G'—G)
- ] (3.36)
3 L3IM(26'+36)+4G(G'—6)

9==
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F1c. 7. The single scatterer for the electromagnetic case is a
thin disk of thickness zy, and radius ¢ much greater than wave-
length. Only normal incidence is considered, with electric field
polarized in the x direction.

Substitution in Eqgs. (3.24b) and (3.25) gives the
propagation behavior in the scattering medium. Note
that the form of the dependence on elastic moduli is
extremely involved. This complexity (and for that
matter even the presence of shear moduli G, G’ in an
expression describing longitudinal wave motion) may
be attributed to the fact that in the neighborhood of a
scatterer both media are undergoing some lateral con-
tractions, so that the moduli M, M’ appropriate to
infinite plane waves are no longer adequate.
Fortunately we may prevent the shear moduli from
intruding in the equations and demonstrate a simple
result by taking the special case G’=G. The phase
velocity ¥ in the scattering medium is then given by

o= (M/p)}, (3.37)

where the volume averaged parameters M, 5 are those
defined earlier in Egs. (3.35b) and the restriction to
small disparities in density required in the fluid bubble
case (3.35a) is no longer necessary.

The preceding examples indicate that at least in the
Rayleigh limit the theory is not restricted to small
fractional volumes of obstacles. In certain cases the
propagation constant behaves correctly even at the
limit 6=1 where scatterers completely fill the available
volume. In cases where this limiting behavior does not
result, the difficulty can be attributed to aberrations
in single-scatterer behavior, in the light of which simple
results are not expected.

3.3 Multiple Scattering in the Geometrical
Optics Limit

It is also instructive to investigate the region of very
high frequencies or, what is equivalent, scatterers very
large in comparison with wavelength. In this case one
must consider a highly idealized example, an array of
thin disks of large diameter. With the exception of the
small spheres treated earlier, this is the only other
geometrical shape, in three dimensions, meeting two
requirements of present interest: (1) simple analytic
expressions may be obtained for the far field of the
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single scatterer; (2) fractional volumes of unity are
physically allowable.

A Kirchhoff approximation® is used for the case of
plane electromagnetic waves normally incident on a
uniform array of disks having electrical parameters
distinct from those of the medium in which they are
embedded. The single scatterer is shown in Fig. 7; the
intrinsic parameters permeability u, dielectric constant
¢, and conductivity ¢ for the surrounding medium, and
the corresponding primed values for the disk material
itself, are indicated.

If the disk is many wavelengths in diameter, i.e.,
if we assume Re(k)a>>1, then to good accuracy the
scattered waves in the neighborhood of the disk will be
simply plane reflected and transmitted waves. Suppose
that corrections due to the cylindrical boundary strip
at the periphery of the disk may be made as small as
desired by making the disk thin in comparison with
diameter; actually for simplicity, the somewhat more
severe restriction Re(k)z0K1 is introduced, i.e., the
disk is thin in comparison with (unperturbed) wave-
length.

The reasons for choosing such a highly specialized
example are several: First, the electric field vectors in
the neighborhood of the disk have only one cartesian
component, and thus are describable by a single scalar
potential; second, these vectors are readily obtained
from a one-dimensional treatment of transmission and
reflection from a plane sheet; finally, analytic expres-
sions for the far fields may be obtained by means of a
simple integral representation.

The one-dimensional calculation of transmission and
reflection from a plane sheet of material has been
discussed by Stratton.® A unit incident wave Eire
polarized in the x direction, as indicated in Fig. 7, may
be written

Eire= (—1/1k) VX yipine(2), (3.38)
in terms of the scalar potential ¢in¢(z) =e®*?, where y,;
is the unit vector in the y direction. The propagation
constant % is given by

k= pew?+iuow, (3.39)
the imaginary part representing losses due to nonzero
conductivity. The propagation constant k2’ within the
sheet is given by Eq. (3.39) with primed values of the
electrical parameters employed on the right-hand side.

Assuming reflected and transmitted waves of ampli-
tude E-, 14 E¥, respectively, and plane waves in both
forward and back directions within the sheet 0<z< 2,
E* and E- are obtained by requiring continuity of the
tangential components of electric and magnetic field
vectors at the two interfaces between sheet and sur-
rounding medium.

Employing a Green’s function technique, the scattered

3 Reference 12, p. 463.
4 Reference 12, p. 511 ff.
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potential ¢* (r) in the forward hemisphere 2> 0 may now
be written®

Y (r)=—(1/2x)
X f doy(s) cos(n,R) (3/0R) (¢ /R), (3.40)

where the integration is over the plane surface o of the
disk, as shown in Fig. 8. R is distance from surface
element to field point r, and (#,R) is the angle between
R and the normal n to the surface. For the value ¢+ (o)
‘of the scattered potential on the surface we use E*,
the difference between the transmitted wave 1+ E+ and
the (unit amplitude) incident wave. .

In the limit of large distances from the origin in the
forward direction, R may be replaced by spherical radius
r in the integrand. The entire integrand may then be
taken outside the integral sign, resulting in

tka?Et et
YH(r) —— . —; 6=0.

>
I—®0 | r

(3.41)

The forward-scattered far field amplitude is immedi-
ately obtained from Eq. (3.41) as

£(0)= (—ika2EV/2). (3.422)

In analogous fashion, employing the amplitude E~ of
the reflected wave, the back-scattered far field ampli-
tude is given by

f(w)= (—1ika*E~/2), (3.42b)

and substitution of f(0) and f(zx) in the general ex-
pression (3.25) gives the propagation constant « for the
scattering medium in the form

K\ 2 ir@@noET R [wa*noE )
(_) =[1_ ]+[ ] (3.43)
k k k

Consider the two limiting cases of opaque and trans-
parent obstacles. The opaque case arises when the
conductivity ¢’ of the disks becomes very large and
they appear essentially as perfect conductors. In terms

(]

F1c. 8. The field in the forward hemisphere z>>0 may be ob-
tained by integration over the (shadow side) surface o of the disk.
The geometry is shown for the integration according to Eq.

(3.40)

4 A, Sommerfeld, Optics (Academic Press, Inc., New York,
1954) p. 199 f.
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F1G. 9. The electromagnetic disks of high conductivity behave
as perfect reflectors: in the immediate neighborhood of each disk
on the illuminated side standing waves are formed, while on the
shadow side total shadow is created.

of skin depth®® d'= (2/wu’s")}, the requirement is simply
that the disks be much thicker than skin depth, i.e.,
20/d’>1. Imposing this condition, one obtains from
Stratton’s results*

Et=—-1

=1

(3.44)

As illustrated in Fig. 9, individual disks behave as
perfect reflectors in the case; near the disks in the back
direction standing waves are set up so that the resulting
electric vector vanishes at the disk surface, while on
the forward side a total shadow has been formed.

If we substitute Eqs. (3.44) in the preceding equation
and note the scattering cross section Q,=2ma? to the
degree of accuracy implied in the one-dimensional
calculation, the result may be written

k= b+ (1004/2). (3.45)

In extracting the square root, it was necessary to drop
terms of order (#Q,/k)? compared with unity, in
accordance with the fundamental criterion (2.20)
governing all the present work. Whether Eq. (3.43) is
more generally valid in this particular example is a
matter requiring separate investigation.

Note from Eq. (3.45) that waves in the scattering
medium are attenuated just according to the additive
rule (3.28) for cross sections (because of the limi-
tation mentioned, the fraction of power lost per unit
unperturbed wavelength must be small). This result
appears reasonable, even when one observes that no
energy is being dissipated by the obstacles. Phase
velocity, on the other hand, is unchanged. Both these
results may be seen from Fig. 9: Because of the shadow
formed behind each scatterer, the net amplitude in
the forward direction is decreased per unit path length
by a fraction equal to the area of each shadow times
the number of shadows per unit volume, or just #¢Q,/2;
surfaces of equal phase, on the other hand, are every-
where spaced as in the unperturbed medium, so there
is no modification in phase velocity. -

4 Reference 12, p. 504.
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Next we consider the case of nearly transparent disks.
This situation arises when there are arbitrary dis-
parities in electrical parameters between the disk and
surrounding medium, but the path length 2, within the
disks is so short that the internal wave functions do
not change appreciably in the course of traversing a
disk. This is achieved by requiring that |£'z|<<1, or
equivalently that the disks be thin in comparison with
both (internal) wavelength and skin depth.

If we neglect second-order terms in |k’zo|, the scat-
tered amplitudes according to Stratton are given by*

Et= (tkao/ 2up’ ) 2up'k (B — k) + (uk’ — u'k)* ]
E-= (ikso/ 2uu B[ (uk' )2 — (u'B)?]. (3.46)

Substituting these expressions in Eq. (3.43), replacing
k and #’ according to Eq. (3.39), and collecting terms

yields
(3.47a)

where the electrical parameters are the volume-
averaged parameters defined in terms of fractional
volume §=maZzn0:

g=(1—8)u+ou’
é=(1—0)et+d¢
= (1—08)o+dds".

Thus again the propagation constant is related to the bulk
parameters of the medium exactly as if the medium were
homogeneous, provided one employs composition averaged
values. Furthermore, by inspection of the preceding
calculations, in particular Eq. (3.40), it is clear that
the skape of the disk is not important, but rather the
area. We could just as well have employed disks of
square cross section, for example; having done this and
then proceeding to close pack the disks, it appears that
Eq. (3.47a) is correct at the limit =1, where the
scattering medium has become a homogeneous medium
made up of disk material.

As a final comment, observe that the medium con-
taining similarly oriented disks is certainly highly
anisotropic. We were restricted to the case of normal
incidence as this is the only situation allowing descrip-
tion of the vector field quantities by a single scalar
potential. The extensions of the theory required to
handle the vector wave equation, and hence such
problems as the present example, in full, will be sketched
in the closing discussion.

K= figa?1fdw,

(3.47b)

4. DISCUSSION

The intent of this paper has been to establish the
machinery needed in problems involving multiple
scattering of waves. Beginning with the concept of
“configurational” averaging introduced by Foldy,* a
criterion (2.20) was found enabling one to obtain
integral equations for the averaged field quantities. It
was verified that Foldy’s equations for isotropic
scatterers could all be based on this single criterion.
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The situation became more complex with the intro-
duction of anisotropic scatterers and statistical cor-
relations in position; in order to obtain explicit results,
it was necessary to pass to the limit of statistical inde-
pendence. The one result essentially independent of
statistical correlations was the forward-scattered ampli-
tude theorem (3.20) of multiple scattering.

Perhaps the most important single result was the
description (3.25) of propagation in the scattering
medium in terms of the far-field amplitude of the single
scatterer. By appropriate specialization, this formula
was seen to contain both the square-root law (3.29)
for isotropic scatterers, and the addition rule (3.28)
for total cross sections valid for anisotropic scatterers
in the limit of weak scattering density. By then con-
sidering some specific examples in the following sections,
it was demonstrated in both high- and low-frequency
limits that the theory is apparently adequate for
treating all physically allowable densities #, of obstacles
satisfying the fundamental criterion (2.20), provided
that effects of correlation in position can be neglected.

In addition, the double plane wave nature of the
exciting field was discussed, and it was pointed out that
interplay between these waves in the course of scat-
tering may provide a satisfactory answer to questions
relating to energy conservation.

In closing, extensions are listed, some of which are
immediate, the others posing yet unanswered questions
which are in need of further investigation.

1. Removing the restriction of identical scatterers.
This extension is straightforward, and has been con-
sidered by Foldy* and Lax.® One employs an additional
distribution, say p(e), in any number of distributed
parameters « of the scatterers. The approximation
required in this case must read: “The exciting field
may be replaced by the total field that would act if
the scatterer were not present, regardless of the kind of
scatterer present.” This statement certainly holds if
one requires the fundamental criterion to hold in the
extreme case, say nQ,™**/k<K1, where Q,m** is the
largest scattering cross section encountered in the
allowed range. Presumably one could develop a weaker
criterion if necessary. The result (3.25) now becomes

(g) - [H'%(f (0»]2— [%?(f (r))]2, (3.25a)

where

(@)= f dap(a) (8 )

is the far-field amplitude averaged over a.

2. Correlations in position. These effects will become
important whenever there are significant interaction
forces between scatterers. Also, the exclusion of inter-
penetration is a reasonable physical requirement, and
the consequences should be investigated.
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A perturbation approach for the exciting field has
been hinted at earlier, and appears straightforward in
principle. Assuming an explicit form for the remainder
term R(r|ry) in Eq. (3.2), the equation may be carried
to the stage analogous to Eq. (3.14) and integrated
without much difficulty for reasonably simple forms of
the conditional density. This will result in a set of
implicit equations somewhat more involved than Egs.
(3.23) for the expansion coefficients, which together
with the forward amplitude theorem (3.20) specifies
the solution of the problem completely.

The only difficulty lies in disentangling these equa-
tions to obtain an explicit result, and an iteration
procedure appears to be the best bet. In the right side
of the new Egs. (3.23), the old 4.% « are substituted.
The equation then yields a new set of expansion co-
efficients on the left side, and substituting these in the
forward amplitude theorem gives a corrected x. This
procedure may then in principle be repeated until
convergence is obtained, with « and the 4,° taking on
final values. Notice that this process is analogous to a
Born iteration technique where instead of neglecting
scattering in the trial functions, one neglects corrections
to scattering due to statistical correlations in position.

3. Averaged field quantities related to energy. The
equations describing energy density {|¢|2 and energy
flux *Vy—yV*) merit further investigation. The
first of these has been discussed by Foldy only briefly.*
Apparently additional approximations are required to
obtain a governing equation which is at all tractable.
Consideration of averaged energy flux should lead to
the phenomenological equations of radiative transfer
discussed in great detail by Chandrasekhar,* together
with criteria for their applicability.

The quantity {|¢|?) is equally as important as ()
in experimental application, and what is really needed
is more detailed investigation along the lines of Sec. 3
s0 as to facilitate direct comparison of behavior of the
two field quantities and provide a more unified picture
of multiple scattering processes.

4. Cylindrical obstacles. Extension of the theory to
cover scattering by a parallel array of infinite cylinders
offers interesting possibilities. It is well known that
separation* of the vector wave equation in any of the
cylindrical coordinate systems can be accomplished
relatively simply. At the minor cost of restricting the
discussion essentially to two dimensions, once could
retain the description of various vector fields of electro-
magnetic and elasticity theory by a single scalar
potential, and at the same time increase the scope of
the theory to cover physical mechanisms which cannot
be treated by the present methods, e.g., polarization-
induced charge density on the surface of obstacles. In

43, Chandrasekhar, Radiative Transfer (Clarendon Press,
Oxford, England, 1950).

# Reference 11, Chap. 13. We use the term ‘‘separation” in the
sense employed by Morse and Feshbach, of splitting into distinct
vector solutions.
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addition, cylinder arrays offer certain practical ad-
vantages over spheres in the construction of artificial
media. In elastic solids, for example, specimens may be
simply drilled and filled with the desired scattering
material. With artificial acoustic and dielectric lenses,
cylinders only require support at their endpoints, and
thus need not be embedded in a supporting matrix.

5. The vector wave equation. Finally, in order to
encompass the full vector range of problems of interest
in elasticity and electromagnetic theory, the present
theory must be extended. The clue to performing this
extension is provided by the single-scatterer problem.
It has been shown that solutions of the vector wave
equation are completely describable by three scalar
potentials; two of these are related to solenoidal wave
motion, the third generates irrotational waves.*

Instead of a single scalar potential representing the
incident wave, the latter may be thought of as a column
vector having as components the three scalar potentials
in question. The boundary conditions will specify three
new scalar potentials representing the scattered
radiation; in general, each of these is determined in
part by all three of the incident potentials. The problem
is still linear, however, and the above comments im-
mediately suggest introducing a 3X3 scattering matrix
which when operating on the triplet of incident po-
tentials, or incident ‘“‘vector,” yields the scattered
“vector.” Notice that this mode conversion or interaction
between different components of incident and scattered
wave, resulting mathematically in the scattering matrix
being nondiagonal, is just what prevents the vector
problem from being treated as three individual scalar
problems.

At this point the theoretical discussion of the present
paper may be reformulated, and it appears that the
resulting integral equations for various field quantities
will essentially be modified only by the extensions
described, i.e., the scalar potentials replaced by 3-
vectors, the scattering operator by a 3X3 scattering
matrix. Analytically, one will have the problem of
finding eigenvectors of these equations, in addition to
considering their functional properties.
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APPENDIX I. SUMMATION OF MULTIPLE
ORDERS OF SCATTERING

It is worthwhile to consider for a simple case the
infinite series consisting of the bracket in Eq. (2.19)
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15t zone:
o+p=R+A/2

Fi16. 10. For the isotropic point source at r;, waves rescattered
once from r, in the course of getting to the evaluation point r
will be no more than = out of phase for all r, lying in the first
ellipsoidal half-period zone, defined by om—+pm < R+N/2.

operating on T(r;¥(x|ry,---';tx), in order to show
roughly at least how a modified index of refraction
characterizing the scaftering medium is generated from
multiple orders of scattering.

We have
x=(1+ T TE)+T T T T(a)+eo)

XT(@)g(r|ry,---"rv). (A1)

Take a random array of isotropic point scatterers
distributed with constant density #,, and scattering
operator defined by

xo=T(t W (x|ry,- - " xx)=f¥;

eiklr—r,‘]

Jr—tf[’

where we have written y;=y(r;|ry,- - -,ry) for brevity.
The far field amplitude f is determined by the physics
of the scattering process, and will in general be complex.
The second term in brackets in Eq. (A1) now becomes
(at field point 1)

> TE)T(r(x|ry,- - rx)

m#Ek, ]
eiklrm—r,‘l eiklr—rml
=2 fHi——
m2h,g [ tm—1;] |T—1n]
eik(ﬂm+ﬂm)
= ¥ ——
mEEd PO

where pn=|1;—rn| and o,=|r—r,|, shown in Fig.
(10), are the distances from ‘‘source” r; to scatterer
m and scatterer 7 to field point r, respectively, and the
distance from source to field point is given by
R=|r—r;].

Now consider those scatterers in the ellipsoid defined
by pm+on<R+MN/2, shown in Fig. 10. The relative
phase of rescattered waves is determined by the total
path length p.+o., hence contributions from those
scatterers on the connecting line between r; and r are
exactly in phase, the waves from other scatterers
gradually falling further behind and the worst laggards,
on the surface of the ellipsoid, being just = behind in
phase. Thus waves rescattered once within the ellipsoid
all add with the same sign, and the region serves as a
first “Fresnel half-period zone.” The higher zones are
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defined by R+#)A/2L pmtomnS R+ (m+1)N/2, n=1, 2,
3, ---, and it is easy to verify that the contribution
from each zone has alternate sign from that of the
preceding one.

We can readily estimate the contribution x; from the
first zone. Neglecting fluctuations, since we seek
averaged field quantities, the sum may be replaced by
an integral, giving

1st zone gtk(pmtom)

x1= fi; >

m#=k,j PmOm

eik(pto)

~nofY; f dr
1st zone po

Choosing bipolar coordinates p, ¢, 8 for the integration,
where 6 is the azimuthal angle of rotation about the
connecting line between r and r;, it has been shown that
the volume element is given by dr= (ps/R)dpdadf.*®
Taking R large so that terms of order A/R can be neg-
lected in comparison with unity, x: becomes, integrating
first over the strip of constant p shown in Fig. 10,

1 pR R—pFA/2
x17= 2100 fA) ;- — f dpf doet*(rta)
R J, -

41r'inofR € kR

7

k R

Noting that the spatial variation of the phase of x; is
identical to that of x, we may calculate the first zone
contribution x; to secondary scattering, the next term
in the series of Eq. (A1), in precisely the same manner:

1st zone

X2= Z T(fm) Z T(tn)T(l’_f)lﬁ(l’I | S TR ",I'N)

m#=k n¥Em,j

1st zone

~ 2

m#=k
=~ (1/21) (4mine R/ k) fi;(€*%/R).

At this point it is quite easy to show by induction,
following the procedure outlined above, that the first
zone contribution to the nth order of scattering is just

1 s4wingfR\" e*E
X”z_( ) f'l’] .
n! k R

T(rm)XI

(A2)

Further consideration of the effect of the remaining
zones indicates that the total contribution of all zones
to each order is just half the contribution from the first
zone, a not surprising result. Thus, modifying each x»
by a factor 2~ because of the cumulative nature of the
change, the series of Eq. (Al) may be summed,

4 This (nonorthogonal) coordinate system has been discussed
by T. L. Hill, Statistical M echanics (McGraw-Hill Book Company,
Inc., New York, 1956), p. 203.
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point source

F1G. 11. A specified array of scatterers, more or less uniformly
distributed throughout the spherical region of radius R,, is il-
luminated by a point source. The first half-period zone for re-
scattering to the point z, constructed exactly as in Fig. 10, is
now only partially filled, the dashed portion being unoccupied.

obtaining
© Xn
xX= -
n=() 2"
w 1 s2xingfR\™ e*E
SE (R
= f¥i(e*?/R), (A3)

which describes an outgoing spherical wave propagating
in a scatiering medium with complex index of refraction
given by

k' /k=14 2anof/k?).

This expression is only correct in the limit of weak
scatiering density, i.e., for |k'/k| — 1, as shown in the
text. Note that, since f is just the forward scattered
amplitude for a single scatterer,*® and by virtue of the
theorem*” relating the imaginary part of this quantity
to extinction (i.e., scattering plus absorption) cross
section Qex we may rewrite Eq. (A4) as

k’ 21!'"0

k k?

(A4)

inOQex

(AS)

Ref+

Thus in this approximation propagation in the scat-
tering medium is characterized by a modified phase
velocity dependent upon the real part of forward
scattered amplitude, and fractional energy loss per unit
length equal to the extinction cross section per unit
volume #o().

As mentioned in the text, we presented the above
estimate simply as heuristic support for the interpre-
tation of the series as a field with modified propagation
behavior. It is interesting to note, however, an im-
portant by-product of the discussion. For problems in
which the field behavior is desired for either an explicit
“frozen” or a random configuration of weak scattering
strength, it may be practical to use the multiple orders
of scattering approach if good convergence can be
obtained with only the first few orders. In view of the
role shown to be played by succeeding orders, it appears

46 See Egs. (3.6).
47 Preceding Eq. (3.28).
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that one can now readily estimate the number of orders
required for convergence in a given problem.

For example, consider the behavior of a specified
configuration of isotropic point scatterers, distributed
more or less uniformly throughout a sphere of radius
Ry, when illuminated by an isotropic point source, as
shown in Fig. 11. The first zone is now only partially
occupied with scatterers, being nearly empty near the
illuminated surface of the sphere and containing the
maximum number near the shadowed surface. This
indicates that scatterers on the shadow side will be
more subject to multiple scattering effects, i.e.,
“shielded” from the incident wave by those scatterers
on the illuminated side.

It is reasonable that the fluctuations encountered at
each order will be comparable with the average field
of that order, provided of course that no strong perio-
dicities in scatterer positions occur. The average effect
of the nth order of scattering may be estimated by
integrating over the occupied part of the first zone.
The calculation runs exactly as above except that the
p integration only extends to Ro+2z (for scatterers lying
on the z axis). Multiple scattering effects are strongest
at the point in deepest shadow, where z= R,, and at this
point the ratio of incident field due to nth-order scat-
tering, say "™, to original incident wave is given by

inc(n) 1 41!' RO n
LA ( af ) (A6)

|pinc Nn! k

The number of orders that must be employed for good
convergence is given by the value of #» which makes the
above ratio small in absolute value compared to one.
If |4wnofRo/k|<<1, then multiple scattering can be
neglected and the scatterers treated as independent
obstacles each illuminated by the original incident
wave alone. If |4xnofR/k|>>1, the scattering strength
is no longer weak and the simple zone treatment given
here breaks down. The multiple orders of scattering
treatment is no longer practical in this latter case,
however, as too many orders are required for converg-
ence. It is in the intermediate range, |4wnofRo/k| =1,
where only two or three orders are required, that the
multiple orders of scattering approach may prove
fruitful in a variety of physical situations.

Note also that the criterion given in Eg. (A6)
involves both real and imaginary parts of the forward
scattered amplitude, so that even in the limit of vanish-
ing extinction cross-section multiple scattering effects
can still be significant. The reason for this is that indi-
vidual scattered waves can add in such a manner as to
build up a field on the shadowed scatterers which, while
undiminished in amplitude, may be appreciably modi-
fied in phase velocity and hence wavelength.

Finally, since the criterion is independent of the
source location, by moving the source off to infinity in
the usual manner we see that the results are equally
valid for incident plane waves.
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By using the Case method of expansion of the angular neutron distribution into series with respect to
eigenfunctions of the plane Boltzmann equation, the critical problem of a slab has been formulated. By
means of symmetry considerations, the problem of boundary condition has been reduced to one singular
integral equation, which has been treated by classical methods. This treatment has given an integral equa-
tion for expansion coefficients, which by means of a simple transformation can be reduced to a Fredholm
type with a regular kernel, and an additional equation, which plays the role of an exact critical condition.
The methods and results of numerical calculations will be published soon,

I INTRODUCTION

HE purpose of this paper is to present an appli-
cation of method, developed by Case! for the
one-velocity Boltzmann equation of the neutron
transport theory, to a new problem, not yet solved by
means of classical exact methods. Case’s method was
inspired by Van Kampen’s work? on problems of plasma
oscillations. In the latter work it was stated that in
problems involving transport equations, the eigen-
functions may be distributions in Schwartz’s sense.
Observables in such cases are obtained by integration
of eigenfunctions and, therefore, are the “proper”
functions.

In the above quoted work, Case has constructed in
explicit form the eigenfunctions of the Boltzmann
equation; he has proved their completeness and applied
these methods to elementary problems of the neutron
transport theory, as for example to Milne problem,
to Albedo problem. He has also obtained Green func-
tions in an infinite and semi-infinite medium.

It should be mentioned that a similar method has
been used previously by Lafore and Millot? but with a
somewhat different aspect, without completeness
theorem and in a less effective form.

In this paper the problem of critical thickness of a
slab is treated by means of the eigenfunction expansion,
and an integral equation reducible to Fredholm type
for expansion coefficients with an exact critical con-
dition is derived. Numerical calculations of these
equations are now being done and will be published
soon.

II. EIGENFUNCTIONS OF THE ONE-VELOCITY
BOLTZMANN EQUATION

The one-velocity Boltzmann equation in the neutron
transport theory in the case of plane symmetry has
the form

w(Y/0x)+y=(c/2) | Y(wu')dn'. M

Following Case’s treatment, we are looking for the

1 K. M. Case, Ann. Phys. 9, 1 (1960).
2 N. G. Van Kampen, Physnca 21, 949 (1955).
3 P. Lafore and J. P. Millot, Rept. CEA No. 1072, Saclay, 1958.

eigenfunctions in the form

Y (@) =€, ().
The equation for ¢,(u) which results from Eq. (1) is

(—a/9)6s ()= (c/2) f 6. (' =c/2,  (2)

where it has been taken into account that the right side
can be arbitrarily normalized.
Now, the full solution of this equation gives

& ()= (c/2)P(v/r—p)+N(2)3(u—).

The unknown function A(») can be determined by
normalization condition, i.e.,

¢y(#)d# 1= (/2P f

1V— M

AG) f Su—n)dr. (3)

Two cases must be taken into consideration: (a)
v (—1, 1). Equation (3) takes the form

1

1= (c/2)uf (du/v—p)=cv tanh=1(1/v)v,

which gives two discrete eigenvalues ==vo. The corre-
sponding eigenfunctions have the form

Yo (2,) = o (u)eT 217, (4a)
where
Gox= (¢/2) (vo/voFp). (4b)
(b) »&(—1, 1). Equation (3) has now the form
R NC
It is easily seen that
A(¥)=1—cv tanh™ly (5a)
and
V()= (u)e =", (5b)
where
&y ()= (cv/2)P(1/v—w)+A(»)3(u—»).  (5c)
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Case has proved that the functions ¢oy and ¢, (—1
<»<1) are complete for all functions ¥ (u) of physical
interest defined in the interval (—1, 1).

III. EIGENFUNCTION EXPANSION FOR A SLAB

Solutions of the Boltzmann equation (1) may be
now written in the form

Y(%,u) = aordoy. (w)e"0+-aopo ()€ »

+ f s (We1dv, (6)

where the constants aq, @o_, a(v) should be determined
by suitable boundary conditions.

Let us consider a problem of the critical thickness of
a slab, which is infinite in all directions perpendicular
to the x axis. Let the center of the coordinate system
be placed in the middle of the slab. Let us denote by
d the half-thickness of the slab. The boundary condi-
tions are as follows:

¥(—d,p)=0 for u>0,
‘l’(d)ﬂ)=0 for wu<0,

(7a)
(7b)

where u is a cosine of an angle between the direction
of the neutron velocity and the x axis. Inserting the
general form (6) of the solution into Egs. (7a) and
(7b) gives two integral equations for the expansion
coefficients. This formulation of a problem is incon-
venient because we have two integral equations for
a(v) in two separate intervals of u. Let us take into
account symmetry properties of the neutron distribution

in a slab:
ll/(x,ﬂ-)='¢(-'x, _M)' (8)

This fact enables us to take only a symmetric part of
the general expansion (6) as a general solution for a
slab. It has the form:

Vo (@) = a0 [Por (w)e~= " +hoy (— u)e*/*] .
+ao Lo (p)e* " +¢o_(—p)e=/"]

1

+ a()[ps(w)e " +¢,(—pe="1dv. (9)

-1

Owing to the shape of the discrete eigenfunctions ¢o (1)
and ¢o_(k), one can easily prove that the following
identity takes place:

o ()= (— el
=00 (e -+ o (—w)e/"

cf v Vo
E—[ e——z/vo_'_
2l ve—p votp

e*! "°]. (10)
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So the general form of a solution of the Boltzmann
equation (1) with a symmetry (8) has the form:

Yo (2,0) = (Gor+ao)[dos (w2 04-o, (—p)e ]
+ [ Wt (e, (1)
wa]

which can be further simplified. The integral part of
the expansion (11) may be written as follows:

f ()b, (W)= (— )" Tdo

0

= f a(V)I:¢y(F-)e"ilv_i_qsv(__”')ez/v]dv

+f (I(V)[d’v (#)6‘x/v+¢y(_#)ez/v]dy
= -f a(... V) [¢—V (")ez/y+¢—y(—#)g~'-’vi’v]dy
+ [ a0 e, (= et T

- f [a(v)+a(— ) s (we=/"+6, (—w)e""Td,

where in one integral the change of integration variable
v— —y has been performed and the following property
of ¢,(u) has been used:

b (W)=y(— ).

The ultimate form of the solution of the Boltzmann
equation (1) with the above mentioned symmetry is

W (20) = ac[bor (e "0+ oy (—p)e=/]

1

—a f 5[, W'+ (—we"1dv, (12)

where aq is 2 new constant and &(») is a new expansion
function. This form of the expansion has a very useful
property. Boundary conditions (7a) and (7b) now have
an identical form:

1

[ 3t

0

=0 (et (—u)e ¥ for 0<u<1 (13)

(we can divide without any loss of generality both sides
of the boundary condition by ay).
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On inserting the functions ¢,(u) into Eq. (13), we
obtain

A(u)@(u)e’

+(c/2)P f V(W)L (e v—p) + (= /) 1o

=0+ (e "+ o (—plemd. (14)
Let us use a new expansion function

b(v)=a(v)ed. (15)
Equation (14) should be written now in the form

1 1 e—2d/v
AW+ /2P [ 106 |

0 v—u vtp
=0 (e +¢o (—p)e=,  (16)

and the solution of the Boltzmann equation (1) for a
slab is

Ve (2,1) = ao[ Por (w)e"0+poy (—p)e=*]

—ao | b()[d(we =P+, (—pe=Jdv. (17)

0

IV. REDUCTION OF THE INTEGRAL EQUATION
(16) TO THE FREDHOLM TYPE

Equation (16) is a singular integral equation. An
elegant theory of these equations is given in Muskhe-
lishvili’s monography.* Using his concepts, we de-
compose our equation into two parts: a singular and a
regular one. We treat the regular part as a nonhomo-
genity of an equation, which now takes the form of a
dominant equation:

vb(v)

dv=g(u), (18)

A
R
where

g (1) = oy (w)ed oy (—p)e=l
—2d/ v

—(¢/2) f i_'_—b(v)du. (19)
0o VTHU

The integrability of the second term in Eq. (17),
which gives us the observable quantity, namely the
angular neutron distribution, requires d(») function to
satisfy the H* condition, i.e., b(v) should satisfy
Holder’s condition H(y) on every closed part of (0.1)
interval, and near any end c¢; of this interval (¢;=0,
c;=1) it must be of the form

b(»)=b*(»)/(v—c)*, 0<a<l,
where 5*(v) belongs to the class H(y).

(20)

4 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff,
Ltd., Groningen, Holland, 1953).

ROMAN ZELAZNY

On introducing the sectionally holomorfic function

vb(v)
2z

y—

N(z)E(l/Zm')'f —62~ dv, 21

the problem of solution of the dominant equation (18)
can be reduced to the Hilbert problem.
According to Plemelj formulas

1 Lewb(v
NG+~ =—P [ ALAPR
m Jy 2 v—pu
N*(u)— N~ ()= (¢/2)ub(w), (23)

(where N+ and N~ denote the limits of IV as z goes to
the cut from above and from below, respectively) and
the integral equation (18) takes the form:

[x@)#—”zf'f]zvﬂn)—[A@)—?]N—w{ug(y) (24)

or
¢ ug (u)
G)N*(u)—N—(w) =~ ——————— (25
(W)N*(u)— N~ (u) NG — (e D) (25)
where NG (imen/2)
(W)= (26)

M) — (imeu/2)

Function N (z) has from the definition (21) the following
properties:

1. It is analytical in the complex plane with a cut
from O to 1 along the real axis.

2. It vanishes in infinity as 1/z.

3. It is bounded at the ends of (0,1) interval by

and [co/(1—3z)=],

as z— 0 and z — 1, respectively.

c1/2 a<l

Now the problem is to find such a sectionally holo-
morfic function N(z) which satisfies Eq. (25) with
G(u) defined by Eq. (26) and which has the properties
listed above. This is a nonhomogeneous Hilbert
problem in the case of arc.

Let InG(¢) be an arbitrary branch of this multi-
valued function, and let us define a function I'(z):

1 p'lnG
I‘(z)=—.f . (t)dt;

2w t—2

(27)

then the function X, 71(z), where Xo(2) is defined as
Xo(z)=el'?, (28)

satisfies the homogeneous part of Eq. (25) (to prove
this one must use the Plemelj formulas). However,
this function does not satisfy all conditions which were
formulated above for function N(z). It is easily seen
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that condition 3 is violated. Let us examine the be-
havior of X(z) near z=c:

X0 = (5— i) 50, (5), (29)
where a, and B are real constants given by
) InG(cx)
arti8i= (—1)* (30)

e

and ©2(z) is a bounded, nonvanishing function at the
point ¢. In our case

(1/276) InG ()= (1/m)8(n), (31)
where
0 (u)=arg[ A (u)+ (¢mcu/2)]
=arg[1—cu tanh~'w+ (iwcu/2) ], (32)
6(0)=0; o()=m;
ar+i6,=0, astiB=1.
So, X(2) can be written in the form
Xo(z)=(z—1)Q(2), (33)

and it is easily seen that X¢! is not bounded at the
end z=1. Now we may construct in a unique fashion
a function X (z), which has a proper behavior at z=1,

X(2)=(z—1)"Xo(2), (34)

and which also satisfies a homogeneous part of Eq.
(25). Using again Plemelj formulas, we obtain

Xt (u)=e MEWX' (), (35a)
X-(u) =) WX (), (35b)
where ) GG
X = e enp| — [ = |
2t Yo p—u
and
Xt (w)
Gu)= : (36)
X=(u)

Now we are able to solve the nonhomogeneous Eq.
(25). On inserting (36) into (23), we obtain:

¢ ug(w)X—(u)
AH.(M)X-F(”)—-f\T—(M)X_(“):Em‘
w)— (imep

At present the problem can be formulated as follows:
we are looking for a function M (z)=.V(2)X (z), which
should be sectionally holomorfic and should be a solu-
tion of the nonhomogeneous Hilbert problem (37).
This solution follows immediately from the Plemelj
formulas:

(37

1 ple wg(W)X(u)d
N@X@=— | -
(X6 f 2 DNW)— (i /2) (' —2)

2w
+Pi(z), (38)
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where P(z) is an arbitrary polynomial of degree k.
So we may write
1 e W)X

N()= f
2mwiX (Z) 0

2 DN — (imeu/2) 1 —2)

(39)

The last term is evidently a solution of the homo-
geneous Hilbert problem.

Now we must verify that the function of this form
satisfies the condition at infinity. First of all, the
polynomial P;(z) must vanish. Secondly, as the function
X (z) in the denominator causes the function N (2) in the
form (39) to tend to a constant in infinity, we must add
an additional condition:

1,7 NX=(uNdu'
f wg(W) X~ (u")dp o, (40)
o Mu)— (imen’/2)

Knowing already the N(z) function, we can calculate
the coefficients of our eigenfunction expansion &(u)
by means of formula (23). This calculation must take
into account the Plemelj formulas for the integral in
formula (39) and the relation (36). The ultimate
formula for &(u) function is

3 Au)g(u) B 1
N (u)+ (reu/2)? X~ (u)[A(w) + (imeu/2) ]
1 ’ NX—(uNdu'
XEPf ug(nh)X (u")dp ,
2 Jo [Nw")— (iren'/2) J(w'— )

b(u)

(41)

and it is to be remembered that the condition (40) must
be satisfied.

Now we replace in (40) and (41) g(u) by the right
side of the formula (19) and we obtain an integral
equation for b(u):

b(u)=A(u)paln)

1 ¢ pt poaw)X(W)de
__°p f
B2 Jo IANW)— (imep'/2) J(W' —u)

1

1 ¢
+———f ve247p(v)
B(u) 2 Yo

2N p' X~ (u")du'
%L aoe
2Jy [AW)— (imeu’/2) J(0'— ) (v+u")
B(uw)A
__M]d,,, (42)

v+u
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where
dap) = oy (u)e¥ 0 +oy (—p)e %",
A(w)
Apy=————,
M )+ (e 2)°

B(u)=X~"(w)[A(w)+ (mwcu/2)]
= X ()N (u)— (meu/2) ],
and an additional condition

fln'cbd(#')X‘(#')du':f fl u' X~ (u)
o Ap)—(@men'/2) 20 Np')— (imep’/2)

x[ fo e “/,yb(v)dv]dp'. 43)

v+u

Function X—(u) can be evaluated according to Appendix
B of Case’s paper:

P P
X~ (u)=
u—1
but
! lnG(ﬂ')dﬂ
(s =-—|: ——1rz lnG(u)]
1 10(#')dn .
- f — 3 InG(w),
T Yo

ROMAN ZELAZNY

therefore,
G3Hw) P o)
X—(u)= exp— | ——dy/
= ™Yo MM

AMu)— (meu/2) 1 1 LO(u")du!
= —. (44)
[X(u) + (imen/ Z)J fo
V. CONCLUSION

The problem of the critical thickness of a slab has
been reduced to the system of two equations (42) and
(43) for the expansion coefficient (») of the continuous
eigenfunctions of the Boltzmann equation and for the
critical thickness d of a slab. Both equations are coupled
by means of b(v) function. Treating Eq. (42) as an
integral equation (which by means of simple trans-
formations can be reduced to the Fredholm type with
a regular kernel) determining &(») function, Eq. (43)
can be considered an exact critical condition for a slab.
The functions appearing in these two equations are
rather complicated, especially the X—(u) function,
which cannot be expressed by elementary functions
and must be evaluated numerically and tabulated.
The numerical calculations are being done now, and
the methods of calculations and the results will be
published soon.
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The Tschebyscheff polynomial approximation method of the neutron-transport equation is developed.
The relations between the relaxation constants in this approximation and the positive roots of Ty..1(u)=0
are derived. Using these relations, the necessary condition for reactor criticality is discussed. Application
to Milne’s problem leads to an explicit expression for extrapolated end point which is formally the same in
the spherical-harmonics method. Numerical comparison of this method with the spherical-harmonics method
verifies Conkie’s conclusion [W. R. Conkie, Nuclear Sci. and Eng. 6, 260 (1959)7] that, for weak absorbers,
the spherical-harmonics method gives the values for extrapolated end point which is closer to the exact
value than the T method does while, for strong absorbers, the Ty method gives closer value than the P

method does.

1. INTRODUCTION

HE purpose of this paper is to develop the
Tschebyscheff polynomial approximation method

of the neutron-transport equation. The spherical-
harmonics method has been used widely,' but there
is no @ priori superiority of the P method to other
expansion methods. Any set of orthogonal functions
can be used and the criterion for the choice of a set of
functions are the rapidity of convergence and the
simplicity of treatment. The Pz method surely satisfies
the second requirement, but so long as the rapidity of
convergence is concerned, there is some evidence that
the Pr method is not a good approximation. For
instance, the neutron angular distribution in Milne’s
problem obtained by the Pz method approaches the true
distribution, at best, very slowly. The Tschebyscheff
polynomial method was first proposed by Aspelund*
and by Conkie.5 The first author, however, considered
only the T; and T approximations and applied the
method to Milne’s problem with Marshak’s boundary
condition.® Conkie tried to obtain the general expression
of the method and has given the tables for the recipro-
cals of relaxation constants in the T5 Ty, and Ty
approximations and the values of the extrapolated
end point for Milne’s problem in the Ty, T3, and T
approximations for Z,/Z=0.1, 0.5, and 1.0, where
2, and 2T are scattering and total cross sections,
respectively. However, Conkie did not give explicit
expression for the extrapolated end point, and his
treatment is not suitable to multilayer problem. Now,
as will be seen in the following, we can develop the Ty
method almost as completely as the Pr method.
However, the problem of how to apply the T method
to spherical or cylindrical geometry has not been

1B. Davison, Neutron Transport Theory (Oxford University
Press, New York, 1957).

2 A. M. Weinberg and E. P. Wigner, The Physical Theory of
Neutron Chain Reactors (The University of Chicago Press,
Chicago, Illinois, 1958).

38, Chandrasekhar, Radiative Transfer (Oxford University
Press, New York, 1950).

+ Q. Aspelund, PICG 16, 530 (1958).

5W. R. Conkie, Nuclear Sci. and Eng. 6, 260 (1959).

8 See p. 533 of reference 4.

solved, and the inapplicability to such geometry may
remain an unremovable fault of the Tx method. In
Sec. 3, mathematical properties of relaxation constants
are discussed; and in Sec. 4, the necessary condition
for the existence of a nonzero solution to the homo-
geneous Boltzman equation is discussed.

2. Ty APPROXIMATION METHOD

We consider the one-dimensional Boltzmann equation

pof(au)/dx+Zf () =42, | flrw)du (2.1)

-1

where the symbols are: u cosine of angle with positive
x axis; x coordinate; f(x,u) flux density of neutrons at
position x traveling in direction u; Z and Z, are total
and scattering cross sections, respectively. In the
monoenergetic case, the absorptive and multiplicative
systems are characterized by Z>Z, and by Z<Z,,
respectively. We expand f(x,u) into the Tschebyscheff
polynomial” T',(u) according to Aspelund

. N
flou)=7""o(x)To(u)+2x" ‘él Yn(@)Ta(w). (2.2)

The orthogonal relations between T,(u) are

1 r m=n=0
[ T Tatt=syidu=tw m=nseo.
~1 0 m#n
From (2.2), (2.1), and the above orthogonality relations,
we get the set of equations

E'I/n(x)‘*‘zlﬁn—'(x)-l-zlﬁ»g'(x) 0, (2.3a)
Yan(x)
() +1' (%) =Zaho(x) — 22, 21 PP (2.3b)
If we put
¥a(2)=ga(N)e~ >, (2.9)

7J. Arving and N. Mullinieux, Mathematics in Physics and
Engineering (Academic Press, Inc., New York, 1959).
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we get a system of simultaneous equations

z g2n(N)

(2_28)30 \) ——glO\) =—22, 3 s (2-53-)
A n=1 4n2—1

228N =gn1(N)+gna(D), #>1.  (2.5b)

Aspelund and Conkie did not give an explicit expression
for g(A). Conkie assumes a solution of the form

flu) =21 are® Moy (u),

and derives the equation for ¢x(u)

/Nt D) ()3 (Z/2) f or()du= Wy ().

If ¢r(u) is an exact solution, the right-hand side of the
above equation vanishes. In the Ty approximation,
Conkie puts Wyy1(u)=Tw+1(z) and obtains

Zs Mk Tngp1(w) — Ty Ak
or()= { w1(1) = T ( )}’

2z TN+1 O\k) | 2t Ak

which satisfies the normalization condition

1

Nk=f or(u)du=1.
1

It is possible to determine g,(A) only when the
determinant, of which the coefficients of g(A) in (2.5)
are the elements, vanishes. Aspelund took this method.
However, it is possible to determine g(A) in another way
that is essentially the same as the P;, approximation.?
There are two sets of polynomials that satisfy the
following recurrence relation

Tria(N)=22T . (N) = T2 (M), (2.6a)
UniaM) =AU\ =Uns(), - (2.6b)

where the T'(\) and U(\) are the Tschebyscheff
polynomials of the first and second kind, respectively.
T.(\) and U,(\) are defined by

T..(\)=cos(n arc cos\),
U.(\)=sin(n arc cos\)/ (1 =223,
The explicit form of the first few 7”s and U’s are
To=1, Ty=X, Ty=2\2—1,
Ue=0, U,=1, U,=2x.

T.(M) is a polynomial in A of order #, and U.(A) is a
polynomial in X of order »—1. It is possible to put

gaN)=AT.(A\)—BU.(\), n=>0. 2.7)
The last equation of (2.5b) corresponding to n=N is

gv—1(0)— gy (V) =0, (2.8)
8 W. Kofink, ORNL-2334 (1957).
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which we can write
ATw1(N)—BUyp (M) =0. (2.9

Equation (2.9) is an equation which determines the per-
missible value of A when 4 and B are properly deter-
mined. The solution of (2.3) corresponding toa particular
Ais

¥a (@)= ga(Mi)e >,

The general solution of (2.1) in the Ty approximation
is then

FEw) =11 argo(Ae)e 2™
k

N
+21Y Y arga(Ae)e 2™, (2.10)

k n=1

where a; are arbitrary constants and \’s are the roots
of Eq. (2.9). Now, we can show the following summation
formulas:

n=1

B T 1) Tv(N) — T () Twva (V)

b

n—A
(2.11)
N
23 TaU.(N)
n=]1
Tn1(w) Un (N +1=Tx (M) Uns1 (D)
p—A '
When we use these summation formulas, we get
f(wa) =2 s axe™ = Moy (), (2.12)
where
1 ATN+1(>\)¢)—'BUN+1()\1¢) B
i) =-] L@
T B—Ag E—=M\k

From (2.5), it is possible to determine only the ratio
A/B, and it is possible to take 4=1. Here, we take
the normalization condition® rather than 4=1.

1

Nk=f or(w)du=1.
1

(2.14)

It is easily found from (2.10) and (2.5a) that

Ny=2BZ/t\Zs,
from which we get
Bk=1r)\k23/22,

where, in deriving Vi, we used the relation

UrTu—ToUnu=Upw, L>M>0. (2.15)

9 The referee pointed out that our solution is equivalent to
Conkie’s solution when we take (2.14) rather than 4 =1, Equation

(2.14) leads to a simple expression for B, while 4 is more
complicated.
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Thus, we get
SNk Tri1(u)— T (As)

er(p) = )

(2.16)
2z Tns ()\k) =Nk

which is the same as Conkie’s solution.

The equation which determines the permissible value
of A is obtained from Egs. (2.9) and (2.5a). Thus, we
getll

TwpiO)+ @/EMLra()=0,  (2.17)
where
Ly (V) =2 Zl[ 41;:_1} Uria(V).  (2.18)

Now, from Eq. (2.17) it is clear that if V is even, one
of the N’s is equal to zero. But infinitely short relaxation
constants are inadmissible, so we always choose IV to
be an odd number. If N is odd, the left-hand side of
(2.17) is an even polynomial in X of degree (N+1),
therefore, if A is a root of (2.17), then —X is also a
root of (2.17). But if £=3,, then (2.17) reduces to the
polynomial of degree (N —1). In this case, the preced-
ing discussions hold for A that are not infinite. It is
sufficient to obtain another solution. We start from
(2.3) and easily obtain

%(x) = Cx+D, 31/1(00) = —-C/ZE,
¥n(2)=0, n22.

Thus, we obtain the general solution

J ()= (1/7)(Cx+D)— (C/Z)T1(x)

FNV-1)

+ X e g (p)
k=1

V-1

+ X e Mo (u).

k=1

(2.19)

Equation (2.19) is equivalent to Conkie’s solution®? if
we put C=m.

3. PROPERTIES OF RELAXATION CONSTANTS

In this section we consider the mathematical proper-
ties of relaxation constants. The results of this section
will be used in the later discussion on the necessary
condition for reactor criticality.

In order to see the properties of relaxation constants,
we consider L defined by Eq. (2.18). We denote the

positive roots of Twy1(u)=0 by w1, us, * -+, v+ in
the order of magnitude, that is, u1>us> - - w41, >0.
From the definition of Tw.y(u),
w(2l—1)
Bi=CO0S , 1=1,2, ... L(N+1).
2(N+1)

10 See Eq. (14) of reference 5.

U Equation (2.17) is equivalent to Eq. (15) of reference 5.
However, our Eq. (2.17) is more transparent than Conkie’s
treatment.

12 See Eq. (16) of reference 5.
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Now it is clear that
sin(V+41) arc cosu;= (—1)H.
Moreover, for —1<A<+1, we have

(1—22) ZX(NZ_I)————UN“—Z"Q)l R
= PAETAETARN T
b
N—2 N

—1—(1/N)<1.

Therefore, so long as N is a finite number, we can
conclude that

sign of Lyy1(ur)=sign of (—1)% (3.1)
Now we consider a function of A defined by
FN)=Tx:1(0)+ Co/ZMLys1(M).

F()\) is an even function of A, so we consider F(\) for
positive A only. From (3.1), we can show
sign of F(u;)=sign of (—1)4

Therefore, F(A\) will cross the A axis in the interval

pi1<A < Therefore, we get the following inequality:

1>/l.1>)\1>[.12>)\2' . (32)

The property of the remaining relaxation constants
depends on whether Z>Z, or Z<Z,. The coeflicients
of W in Ly.1(M) is equal to the negative value of the
coefficient of M¥*1 in Ty, 1(A). Therefore, the function
defined above will cross the A axis for A greater than
w1 if 2,<Z. Moreover, we can write

Zs 1
rov-2 (12 - ]
E 2NA12'>\22' i 'A'}(N—l)2

X (A=A - (AAya-n).

Mav-n > myav+n >0.

Therefore, if = <Z,, the remaining roots are Ao and — X,
where Ag is a purely imaginary number.

izt
(Es—z)*)\r)\z' .

'>\§(N—-l) LN

Thus, we get the following inequality connecting the
zeros of Txy1(u) and the relaxation constants:

=53, M>wSAcc, Me—nS>men, (3.3)
LIy, m>MSuec, Me—n>mein, (34)
and the remaining roots are a pair of imaginary number.
Z=Z,, m>ASpercc, Me-n>mey, (3.5)

and the remaining roots are infinitely large. The roots
of Ty41(u)=0 are all in the interval —1<u<-1.
Therefore, the distribution of A will be dense as the
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order of approximation increases. From the above
discussion, it is clear that there are two distinct classes
among the relaxation constants. A¢ belongs to one class
and Ay, Ag, -« ‘Ayav—1y belong to the other. As NV increases,
A *Mw-1p will be uniformly distributed in the
interval 0<A<1; and in the limit N — oo, these A’s
will form a continuous spectrum. On the other hand,
Ao forms a discrete spectrum. Wigner'® has shown that
the rigorous solution of (2.1) can be expressed as a
superposition of functions belonging to continuous A
plus solutions which belong to discrete A. Our results
seem to be consistent with Wigner’s results.

4. ON THE CRITICALITY CONDITION IN
THE T APPROXIMATION

The criticality condition in transport theory is the
condition for the existence of a nonzero solution of a
homogeneous equation that satisfies the given boundary
condition. In the criticality problem, the boundary
condition is that there is no inward current at the
surface where the system is surrounded by a vacuum.
In the T approximation, it is impossible to satisfy
the given boundary conditions completely. Therefore,
there exist, as in the Py, approximation, some arbitrari-
ness in the choice of boundary conditions. Here we
use the modified Mark’s condition* for the sake of
analytical simplicity. In the following, it will be shown
that the absorptive system cannot be critical. The
physical meaning of this fact is clear. But so long as
the transport equation describes the physical pheno-
menon correctly, the theory can show this fact only
by the transport equation and by mathematics.

We consider a system which is surrounded by vacuum
at x=a and is symmetric about the plane x=0. Then
the boundary conditions are

f(Oyl") =f(0; _I"‘)’

f(ayl")=0’ B= T H1, TH2, v

“.1)
4.2)

where ui, po, 3ov+1) are, as before, the positive roots of
Tn41(u)=0. With (2.12), the condition (4.1) gives

"y THI(N+D),

wf(au)
J=1) ATy (M)—BUn(\)
= Y e Tryr ()
=0 =N
1v-1) B(\)
— z ake—zzm .
=0 B—Nx
V-1 AT (\)—BUx(A\r)
— Z akgzzl)"‘- : TN+1 (Il')
=0 pAe
3(N—1) B(\)
+ Z akezz/)\k . . (43)
k=0 I ¥

13 E. P. Wigner’s speech at the meeting held in New York for
the American Mathematical Society, April 23-24, 1959,

14 For Mark’s condition in the Py, approximation, see p. 130 of
reference 1.
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Clearly, the first and the third parts of the above
equation vanish for u=—p,, - -+, —usv41). Therefore,
when the second and fourth parts of the above equation
are brought to common denominator, the numerator
must vanish for u= —u;. Here, we define 7(u) and p(u)
according to Weinberg and Wigner.}s

pw)= (u—p1) (p—p2)- - - (k—myvsn),

(4.4)
()= (u—Ao) (u—A1) " - - (b—Njv—1))-
Then we can write
Trir()=2p()p(—p) (— 1RO (4.5)
Then we can write (4.3) in the form
wf (o) = 1N=-1) . YeTwi1 (}L)_{_‘}(N—l) Se Ty (p)
BNk =0 ptA
e
r(wr(—u)
where
n=a ATy —BU A},

Sr=—ar{A Ty (\r)— BUxn(\r)} €2/,

and Q(u) is a polynomial in p of degree 3(N—1).
Q(u) is a polynomial in u of degree 3(N—1), and we
have :(N+1) constants to be determined. However,
the condition (4.2) is homogeneous, therefore, we chose
Qo) to be unity. In this case, we have to determine
$(N—1) constants. The constants vy; and &, are
determined by the requirements that f(e,u) have no
poles at u=X; and at u= —X\;. The requirements that
the poles at \; cancel is

2(—M)Q ()

VeTwr1(he) = . (4.8a)
T wr (=)
Similarly, the condition at u= —M, is
pMIO(—Ne)
8T (=)= ———— (4.8b)

" \e)r(\s) ’
where

7" (A\e)= Me—No) Ae—21) - - A —Nyov—n),

in which the factor A\;—M\; is omitted. If we divide
(4.82) by (4.8b), and remembering the identity

Tws1(0)= Tw41(—Ne),

p(—M)Q )

=" p=0, 1,

OO

This is a set of equations that determine the coefficients
of Q(u). But, as has been said above, we have to
determine 1(N—1) constants. The condition (4.9)
gives 2(N+1) conditions; therefore, it is possible to

we get

o 3(N—-1). (49)

15 See p. 258 of reference 2.
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determine the coefficients of Q(u) only when a is equal
to some particular value. From (4.9), we get

Q)
O(—N)

= (— 1)@+

Me— 1) Me—p) - - - [ Ne—pyv—py

Netna) et p2) - - - Dot pyvan ]
(4.10)

6'_22‘1/)‘,‘.

First, we consider the case £>3,. In this case, as was
pointed out in Sec. 3, all the relaxation constants are
real and satisfy the inequality (3.3). From the in-
equality and from (4.10), Q(u) must change sign
3(N+1) times in the interval —Xo<u<Xo,. But, as
has been said, Q(n) is a polynomial of degree 3(N—1)
and, therefore, Q(u) can change its sign at most (N —1)
times. Therefore, in this case, we cannot find a positive
number a that is consistent with (4.10). The above
discussions hold for arbitrary N so long as N is an odd
number. This is the mathematical expression, at least
in the T approximation, of the physical fact that the
absorptive system cannot be critical. But, if the
system is multiplicative, or £<Z,, the conflictions
mentioned above do not occur. For instance, in the T,
approximation, (4.10) reduces to

= Qo) =_()\0—u1)
Q(—o) (Notu1)

\ ( z 1 1
= — , =—
’ 2(28—2)) T

In the T; approximation, we can surely obtain a
positive number ¢ which is consistent with the above
equation and, therefore, the condition is the necessary
and sufficient condition for the existence of a nonzero
solution. However, for arbitrary N, it is difficult to
show sufficient condition for the existence of a nonzero
solution.

The importance of the above discussion is that, at
present, there is no practical criterion to distinguish a
multiplicative system from an absorptive system in
multigroup transport theory. Davison!® says that, if
at least a pair of relaxation constants are purely
imaginary, the system is multiplicative. However, he
does not give any explanation mathematically. It is
true that if a pair of relaxation constants are purely
imaginary, there can be a periodic solution. But if we
wish to treat the problem rigorously, we must consider
the necessary and sufficient condition for the existence
of a nonzero solution of the homogeneous multigroup
Boltzmann equation. Thus our approach might show
the way of approach to the problem.

g—2Za/Mo

where

16 See p. 252 of reference 1.
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5. APPLICATION TO MILNE’S PROBLEM

Milne’s problem!” is a one-dimensional two region
problem. A half-plane £<0 bounded by the plane x=0
is filled by a noncapturing medium, which scatters
neutrons isotropically without changing their velocity.
No source is present in a finite region, and only the
outward current is applicable at the surface x=0.
There is no inward current at the surface. To obtain
the neutron flux in the medium, and the angular
distribution at the surface, Milne’s problem for linear
anisotropic scattering in the P method has been
studied by Kofink.'® Milne’s problem in the 7'y method
was considered by Conkie using Mark’s!® condition.
However, Conkie did not give explicit expression for
the angular distribution and extrapolated end point.
As will be seen in the following, it is possible to solve
the problem analytically in the Tx approximation.

Before we discuss Milne’s problem, we discuss the
more general Milne’s problem in which the medium is
not necessarily noncapturing. In this case, all the
decaying modes have died out except the one with the
smallest decaying constant. Therefore, for the medium
Z>3,, the neutron distribution is given by (2.10) with
a,=0; k=1, -+, $(N-—-1).

Yo AN-D &

7f(Ou)= + 2 Tyta(w)
p—No k=0 utA;
_aoB()\o)_L*}(N-l) ﬁkBO\), (51)
T VR S TS O
where
Yo=aof A No)Tn o) —BAa)Un(N0)}, (5.2)

3= —Be{4 M) Tw(\)— BA) Un ()}
Now, when we apply Mark’s condition
f(0, —u)=0,

the first part of the right-hand side of (5.1) is zero for
p=-—py, ***—uws+1n. Therefore, when the second and
third parts of the right-hand side of (5.1) are brought
to common denominator, the numerator must vanish
for u=—pu;. That is, we can write

_ cp(—n)
= pNe N (—p)

aoB ()\0) iwv~-n 3B ()\k)

B—No

where ¢ is a constant. The constants v, and 6§, are
determined by the requirement® that f(O,u) have no

17 G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).

18 See reference 8.

19 See reference 14.

2 This method has been used in the Pz method. See, for
instance, p. 258 of reference 2.
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TasBLE 1. Values of dZ, in various order of approximation.

TABLE II. Values of relaxation constants.

Z,/Z Ty T3 Ts Ty Ty Z./2 {01 Ao A

0.1 0.1355  0.2285% 0.2719* 0.3001  0.3212

02 02283 03841 04551 05005  0.5337 o) 9711968 99238155 93820834
0.3 03068 0.5046 0.5868  0.6353  0.6676 02 0.790569 0954991 0413915
0.4 03767 05969 0.6721  0.7074  0.7245 03 0.845154 0077795 0432174
0.5 0.4407* 0.6635 0.7151* 0.7272  0.7273 0.4 0912871 1008605 0.452501
0.6 05009 0.7057 07253  0.7213  0.7175 05 1.000000 1052438 0475088
0.7 05559 07252 0.7191  0.7134  0.7121 06 1118034 1118034 0.500000
0.8 0.6087 0.7256  0.7107  0.7094  0.7098 07 1200004 1224745 0327046
0.9 06590 07127 0.7052  0.7075  0.7086 0.8 1581139 1422807 0555606
1.0 0.707107 0.694190 0.702066 0.706452 0.707963 0.9 2236068 1912672 0.584541

y 2 Py Py Py Exact value 1.0 0.6123724

0.1 01107 02025 02470 02759  0.8539

02 01864 03398 04126 0.4594  0.7851 where

0.3 0.2505 0.4475  0.5342 0.586; 0';‘;3%

0.4 03076 0.5324  0.6188  0.663 0. _ L

0.5 03598 05976 06708 0.6999  0.7207 D/C=—(1/Z){m+tpet - - +usvsn

0.6 04083 0.6448 0.6968 0.7103  0.7155

0.7 04539  0.6756 0.7059  0.7106  0.7127 =A== Nv-n ),

08 04970 0.6921  0.7069  0.7091  0.7113

09 0.5381 0.6970 0.7056  0.7078  0.7106 C (—1en

1.0 0.577350 0.694025 0.703899 0.706920 0.710446 S S —

Z2V5' () p(— M) (5.6)
s Pr, values are reproduced from J, C. Mark, National Research Council 1

of Canada, Atomic Energy Project, Report MT 97, 1945. Exact values are
taken from K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to
the Theory of Neutron Diffusion (Government Printing Office, Washington,
D. C., 1953), where the exact value is calculated by Wiener-Hoph method,

poles at u=»Xo and at u= —A,. The condition at y=—X,
gives

cp(—No)

0Tws1(No)= .
YoTn+1(No) e

By using a similar condition at u=—X\;, we get

c P(Rk) 1
= — 5.
* NeHNo 7" () TN+1()\k)’ (53)
c= ZNP O\o)f(—' )\o)
XA Ao)Tw (o) —BAo)Un(Ao) J(—1)2¥+D . (5.4)

Next we consider the case of a noncapturing medium.
In this case, we easily obtain the flux distribution in
the same way as in the preceding discussion.

7f(0,u)
C jv-1)
=D—=Ti(w)+ 2 B
> k=1

A(=M)Tw (=) = B(—M) Un (— ) }
TR

3= BB (—M\)
XTvp(w)— > ——,
= ptNg

(5.5

X O Ty 0w = BOWUnw)
S = e—N) e—A2) - - - = Nyv—n 1.

Thus, the neutron distributions are determined in the
Ty approximation. A quantity which is of practical
interest in a reactor and which also gives a measure
for the accuracy of the approximation is the extra-
polated end-point value This quantity is easily
obtained.

d=ﬁ nO\o-I-m) Notpz)- -
22 (No—p)Mo—p2)- -+
Mo—A) Ao—A2)- -
MoFA1) o FA2) - - -
2=2, d=01/2){mtpt---

—Ai—Ner = Nv—n )

, (5.8a)

(5.8b)

The expression (5.8) is the same as in the Py, approxi-
mation?2 if the relaxation constants and the p’s were
replaced by corresponding quantities in the Py, approxi-
mation. Conkie did not give the explicit expression
(5.8). Table I shows the values of d for various values
of 2,/Z. Conkie gives values only for Z,/2=0.1, 0.5,
and 1.0 in the T4, T3, and T approximations. It is
possible to calculate d from the formula (5.8) for the
T; and Ty approximations. The relaxation constants
for T1 and T's approximations were calculated from
(217) by KDC-I electronic computer of Kyoto
21 See p. 260 of reference 2.
. ”tSee Eq. (9.46b) and Eq. (9.46c) of the Weinberg and Wigner
% ‘After the revised manuscript for Sec. 5, including Eq. (5.8a),

‘&as s)ubmitted, the referee pointed out that it is easy to obtain
.8a).
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University and given in Table II. However, the
values of d with an asterisk are not in agreement with
Conkie’s results. Relaxation constants for the T, T,
and T approximations were also calculated by KDC-I
and found to be in complete agreement with Conkie’s
values.

From Table I we can conclude that, for weak
absorbers, the P method gives a value closer to the
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exact value than the Ty method does. However, for
the values of Z,/2 smaller than 0.8 or 0.7, the Ty
method gives a better value for d, In spite of the good
approximation of the Ty method for Z,/Z between 0.8
or 0.7 and 0.5; for very strong absorbers, both the Ty
and Pz, methods are no longer good approximations. For
such strong absorbers, another method might be
desirable.

APPENDIX 1. PROOF OF EQ. (2.11)

We prove the summation formulas (2.11) by mathematical induction. For N=1, Eq. (2.11) surely holds. If

(2.11) is correct for N, then

N4l

T 1) Tv (N — T () Tvpr (V)

142 Y T.()T.(\)=
n=1 m—A

+2T w1 () Tva V),

_ {20Tw 11 () = T ()} Tvr ) — T 1 () { 2N v ) — Tw (V) }

By virtue of the recurrence relation (2.6a),

r—A

Trge (@) g1 N) = Tovar () T2 (W)

142’3 T TaN) =

u—A\

Therefore, by mathematical induction, the formula (2.11) is proven.

APPENDIX 2. PROOF OF EQ. (2.15)

First we prove the relation

UM T:N)~=T:NU,N) =T (M)

The above relation surely holds for /=1 and for /=2. If the above relation holds for /=L and for /=L—1, then
it holds for /=L+1 by the recurrence relation (2.6). Therefore, the above relation is right for arbitrary / by

mathematical induction. Moreover, we have the relation

Ui\ ToA)—=T: (MU =Ui(N).

If the relation

Ulo‘)TmO\) - Tl()‘) Umo‘): Ul—mo\)

holds for m=M and for m=M—1, then, by (2.6), the above equation is right for m=M+1. However, the above
relation surely holds for =0 and for m=1. Therefore, by mathematical induction, (2.15) holds.
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The properties of the dipole antenna are studied by an approximate procedure that makes use of the
Wiener-Hopf integral equation. In particular, the input admittance and the radiation pattern are found.
The present results thus supplement the existing theories, which are concerned mostly with short dipoles.
The same procedure is then applied to several related problems. First, the back-scattering cross section of
a dipole antenna is found approximately for normal incidence. Secondly, the two-wire transmission line
is studied in detail by considering it to be two coupled dipole antennas. The capacitive end correction for
an open end is evaluated, and the radiated power and the radiation resistance are found for a resonant
section of transmission line with both ends open. Finally, the dielectric-coated antenna is considered briefly.

INTRODUCTION

HE problem of the center-driven cylindrical
antenna has been investigated by numerous
authors.! There exist now principally three kinds of
attacks: iterative procedures, variational methods,
and Fourier series expansions. Recently, Duncan and
Hinchey? used the last method to get some extremely
interesting results. To employ this method, it is
essential to carry out the calculations on a high-speed
digital computer. The other two kinds of methods are
described in detail in the monumental book of King,?
which will be designated by K in subsequent references.
For convenience, numerous references will be made
to this book instead of the original papers.

For thin dipole antennas of length not much more
than one wavelength, the King-Middleton iterative
procedure [K, p. 101ff] yields current distributions in
good agreement with the experimental results. So far
as the input impedance is concerned, the various
iterative and variational methods seem to give com-
parable results for thin antennas not much more than
two wavelengths in total length [K, p. 8437 If % is
the half-length of the thin antenna, it is reasonable to
think that cases where A<\ are fairly well understood.

The situation is much less favorable for Z>\. Both
theoretical and experimental results are very scarce
in this vast range of antenna lengths. So far as the
author is aware, the following three pieces of in-
formation are available: (1) first-order King-Middleton

* Supported in part by NSF Grant 9721-7750 and Contract
Nonr-1866(32).

! A small sample of the vast literature on the dipole antenna
and related topics is: L. V. King, Trans. Roy. Soc. (London)
A236, 381 (1937); E. Hallen, Nova Acta Regiae Soc. Sci.
Upsaliensis 4-11, 1 (1938); S. A. Schelkunoff, Proc. IRE 29, 493
(1941); R. King and F. G. Blake, Jr., Proc. IRE 30, 335 (1942);
C. J. Bouwkamp, Physica 9, 609 (1942); M. C. Gray, J. Appl.
Phys. 15, 61 (1944); R. King and D. Middleton, Quart. Appl.
Math. 3, 302 (1946); J. H. Van Vleck, F. Bloch, and M.
Hamermesh, J. Appl. Phys. 18, 274 (1947); C. T. Tai, Technical
Report No. 12, Project No. 188, Stanford Research Institute
(1950); J. E. Storer, doctoral dissertation, Harvard University
(1951). Variational methods are used in the last two references.

?R. H. Duncan and F. A. Hinchey, Sandia Corp., Rept. No.
SCTM367-59-(14), 1960.

3R. W. P. King, The Theory of Linear Aniennas (Harvard
University Press, Cambridge, Massachusetts, 1956).

distributions of currents for antennas with A=6\
[K, p. 115], (2) Robert’s measurement of current
distribution for an antenna with A~11A [K, p. 140],
and (3) Altshuler’s* recent measurements of current
distributions for antennas with A~2X. No general
conclusions can be drawn from these results, except
that there is essentially no evidence of any agreement
between theory and experiment. A more direct com-
parison is possible in the related problem of the deter-
mination of the back-scattering cross sections of a
dipole receiving antenna at normal incidence [K, pp.
508 and 516]. Here the theoretical and experimental
results are certainly in disagreement for 42>0.8\.

If these few pieces of experimental data are not
dismissed as incorrectly recorded, then one is forced
to consider the possibility that the existing theories
of the dipole antenna may be inapplicable when A2\,
An iterative procedure is one which gives correction
terms to an initial, rough approximation of the current
distribution. Since usually only a small number of
iterations can be carried out, the accuracy of the
results depends critically on the accuracy of the initial
approximation. Since the iterative procedure itself can
hardly be questioned, an explanation of the discrepancy
between theory and experiment may be sought in the
inadequacy of the initial approximation.

In view of this shortcoming of both the variational
methods and the iterative procedures, in this paper a
completely different approach is to be adopted where
there is no necessity of guessing a first approximation.
In other words, the purpose here is to find a procedure
that starts from the integral-equation formulation of
the dipole antenna problem and gives for the various
properties of the antenna approximate expressions that
are not too complicated and yet are reasonably accurate.
A possible procedure that satisfies this criterion is
given in Part 1. There, only the symmetrical, center-
driven, dipole antenna is treated for definiteness; the
generalization to the asymmetrical case seems to offer
no difficulty in principle. In Part II, the same procedure
is applied to a few somewhat more complicated cases.
In Part III, some of the results are tabulated and

4 E. Altshuler, Ph.D. dissertation, Harvard University, 1960.
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compared with existing experimental data when
possible.

In the procedure of Part I, it is assumed that the
radius of the dipole antenna is very small compared
with either the wavelength or the length of the dipole.
With the antenna assumed to be perfectly conducting,
the total tangential electric field is zero on the surface
of the antenna except at the driving point, and hence
by consideration of symmetry, the tangential com-
ponent of the vector potential is proportional to

C coskz—l—% sink|z|,

where % is the wave number while z is the distance
along the dipole antenna. By expressing the vector
potential as an integral over the current on the antenna,
an integral equation is obtained and may be used to
determine the current. The constant C is fixed by the
condition that the current vanishes at the ends of the
antenna, and, roughly speaking, large values of C
indicate resonance while small values indicate anti-
resonance. The determination of C is a major step in
this procedure. The content of the above-mentioned
integral equation may be qualitatively described by
saying that the current on the antenna is determined
by the conditions that (1) the vector potential is as
prescribed on the antenna, say —A<z<k, and (2) the
current vanishes outside the antenna, ie., 2>/ or
2> —h. In order to determine C, it is necessary to
express the current at z=#% in terms of C. When the
radius of the antenna is small, the kernel of the integral
equation is relatively large for small values of the
argument, and relatively small and oscillatory for
large values of the argument. Accordingly, the vector
potential is comparatively small for z># or s<—*h.
Furthermore, the values of the current at z=4 is not
sensitive to the condition at z<—#4. Consequently,
the current at z=/ may be found approximately by
assuming instead the conditions that (1”) the vector
potential is as prescribed on the antenna and vanishes
for z<—h, and (2') the current vanishes for z>#A.
For this modified problem, the current can be found
explicitly by the method of Wiener and Hopif, and
this gives an approximate determination of C. Once
C is known, some of the properties of the antenna, such
as the input impedance and the radiation pattern,
may be found by assuming the somewhat less accurate
but considerably simpler condition that the vector
potential is as prescribed on the antenna and vanishes
for both z<—#% and 2z>h. This in principle gives
formulas for the desired quantities. However, as is
well-known, the solutions of Wiener-Hopf equations
are in general extremely complicated, being integrals
of exponentials of contour integrals. In order to
compare with experimental data, the theoretical
results have to be evaluated numerically. Since a
direct evaluation of these integrals seems extemely
difficult, it is a necessary task to obtain simple approxi-
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mations to these rather involved expressions. For this
purpose, the smallness of the radius of the antenna
is used repeatedly. It should be emphasized that, in
view of the magnitudes of the various quantities
involved, the approximation cannot be simply described
as an expansion in some small parameter. For this
reason, the procedure is very complicated in detail
although the final result is simple. The particular
procedure adopted yields quite accurate answers over
large ranges of antenna dimensions relative to the
wavelength. After the completion of the present theory.
Prasad measured, with a wavelength of about 37 cm,
the input impedances of dipole antennas of diameter
1 in. and various lengths up to about 12 ft.* Except
for a small discrepency for which the theory may
not be responsible, the theoretical and experimental
results are in unexpectedly good agreement. The de-
tailed comparisons are being carried out.

PART I. CENTER-DRIVEN DIPOLE ANTENNA

1. Formulation of the Problem

The dipole antenna is assumed to be a symmetric
tubular antenna of zero thickness and infinite conduc-
tivity defined by r=a, |z| <k, as shown in Fig. 1. If
I(z) is the total z component of the current at z,
including both the current on the outside of the tube
and that on the inside, then

I(h)=0, (1.1)
and the z component of the vector potential on the

cylinder r=a is given by

A== f 1)K (a—7), (1.2)
dr J_

z-AXIS
/I\ h

1
DELTA- Fic. 1. The center-driven dipole
FUNCTION o antenna of half-length 4.
GENERATOR K._A40©
ATz=0

" -h

8T am indebted to Dr. Sheila Prasad for keeping me informed
on the progress of the experiment.
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where yo is the free-space magnetic permeability and
the kernel X is given by

K(z)= (2r)™ f " d8[ 22+ (2a sing/2)* T

Xexp{ik[22+ (2a sing/2)2 4},  (1.3)
Here % is the wave number. As usual in antenna theory,
the term “vector potential” is used to denote the
vector potential in the Lorentz gauge satisfying the
Sommerfeld radiation condition. On the other hand,
if the strength of the é-function generator is taken to
be —1, the z component of the vector potential is of
the form

ot
A(8)=—TC coskz+4% sink|z|]

0

(1.4)

for |z| <h. Here ¢ is the characteristic impedance of
free space. The combination of (1.2) and (1.4) gives
the integral equation for 7(z), where C is to be deter-
mined by the boundary condition (1.1).

In the King-Middleton iterative solution, the vector
potential is assumed to be proportional to the current
at the same point in order to get the initial rough
approximation. This assumption is reasonable except
near the ends of the dipole antenna, where the current
changes rapidly with z. Unfortunately, the value of
the constant C is determined at z=4, precisely where
this approximation is poor. It is here proposed to find
C by a different procedure, making use of the observa-
tion that A (z) is relatively small for |z| >4 [K, pp. 429
and 527]. This observation is useful because then the
antenna may be approximated by a semi-infinite one
driven by a vector potential distribution which is of
the form (1.4) for |z| <k and is zero for z>h. Con-
sequently, the problem of the semi-infinite antenna is
to be studied first.

2. Semi-Infinite Antenna

The semi-infinite antenna is described by an integral
equation of the Wiener-Hopf type:

fw dZ1(ZNK(z—3")=F(2), (2.1)

where F(z) is known for z>0. It is assumed that
F(0+) and F’(0+) both exist, and F(z) approaches
zero sufficiently rapidly as z-» «. Under these
circumstances, I(z) is in general unbounded near z=0.
If, however, F(z) satisfies a certain integral condition,
I(z) becomes bounded near z=0, and furthermore
lim, o 7(2)=0. It is desired to find this integral condi-
tion. For this purpose, the usual Wiener-Hopf procedure
may be used.

Consider £ to have a small positive imaginary part

TAI TSUN WU

which is eventually allowed to approach zero:

Imk=¢>0, (2.2)
and define the relevant Fourier transforms by
I(§)=f dzl (2) exp(—if3), (2.3a)
Re)= [ asK(@) exp(—iza)

=miJLa(B— i) ]HoO[a(R2—{)Y], (2.3b)
F_(9)= fw dzF (3) exp(—it2), (2.3¢)
and '
F'+(§')=f dzF (3) exp(—i¢z). (2.3d)
Then (2.1) leads to
IOKEQ)=F-)+F. (). (2.4)

For any function f of { analytic in the strip |Im¢{| <e,
define

o+ie/2
(/) ]-= — (2mi)t f & =07, (25)
—0-tie/2
and
0—~3 €/2
[/ = (2mi) f & @ =), (2.5b)

—oc—ief2

where the Cauchy principal values are taken at .
Then [f(¢)]- is analytic for Imf<e¢/2, and [f(©) ]y is
analytic for Im{>—e¢/2. Furthermore, in the strip

[Img | <e/2,
FO=O)I-+©) 1 (2.6)
In terms of the function K (¢), define
L. (¢)=exp[FInK (1) 1, @7
then
K©)=L-®)/L+(®) (2.8)
for |Im¢{| < /2, and furthermore,
L ©)=[L+(=)T™ 2.9
From (2.4) and (2.8) it follows that
IQOL-)—[F-®)Le () 1- o
=[F_()Ly () 1 +F ()L §).  (2.10)

This defines an entire function, which must be zero
because of the behavior at infinity. Therefore,

IOL-@)=[F-®)L:®) 1 2.1

It is assumed that 7(z) has no singularity at z=0.
Thus, as |{| — o in the half-plane [Im{| <e/2,

I)=0(]¢ ], (2.12)



DIPOLE ANTENNA AND TWO-WIRE TRANSMISSION LINE

RIGHT
BRANCH
cuT
-k
/N - A\
K Co
LEFT
BRANCH
cuT

F1c. 2. The { plane and the contour Co.

and furthermore

L_©)=0(¢|7. (2.13)
It, therefore, follows from (2.11) that
[F-@)Ly(©)I-=0([¢|™), (2.14)

as |¢| — . This is the required condition on F(z).

In order to put (2.14) in a simpler form, let ¢ — 0+
and note that K (¢) is analytic in the cut plane as shown
in Fig. 2. Furthermore, the contours used in defining
[f(z)1. both become Cj, also shown in Fig. 2, and
L.(¢) and L_({) are analytic in the entire complex
plane except, respectively, the left- and right-branch
cuts of K(¢). Define

FOQ)=F_()—FO+)/LE+k)],

then F_0(¢)L.(¢) is integrable along Co, at least in the
sense of Euler summability. Therefore, the left-hand
side of (2.14) is explicitly

[F-©OL.©)1

(2.15)

=F<o+>[ )L(:)] HIPOLO1

i(S+k
—— ey [ -0 PrOLG.  @16)
Co
The condition (2.14) is thus explicitly

f & S©L.()=0. (2.17)

3. Approximations for Thin Antennas

The condition (2.17) for the vanishing of the current
at the end of the semi-infinite antenna is exact. This
rather complicated condition can be greatly simplified
if it is assumed (1) that the antenna is thin in the
sense that a/A<1 and (2) that the characteristic
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distance for the variation of F(z) is much larger than a.
Under the second assumption, which is satisfied if the
right-hand side of (1.4) is taken to be F(k—3z), the
behavior of L, (¢) for {~a™' is unimportant, and thus
it is permissible to use the following approximation

of K(¢): _
K(¢)=20,—In[ (k*—¢?)/ k%], (3.1)
where
D =Q+i7/2, (3.2)
and
Qo=1In(2/ka)—~. 3.3)

In (3.3), v is Euler’s constant, numerically about
0.57722. In view of a previous discussion® on the
meaning of the input admittance of a linear antenna
driven by a delta function, the approximation (3.1)
does not introduce any further error beyond those
inherent in the model of the delta-function generator.
Once (3.1) is used, it is possible to define

AO=[ROT, (3.4)

@)= f dM @) exp(—ik2),  (3.5)
and _:

L= f dsL,(s) exp(~its).  (3.6)

It should be emphasized that M (z) and L,(z) are
meaningful only when an_approximation of the type
(3.1) is used. The exact M () and L,(¢) are not the
Fourier transforms of integrable functions.

First, an approximation is to be found for M (z), which
is given by

M (z)=ik(2m)le™s f dgetet
0

X ({2Q0—In[£(2+48) ]— i}
—{2Q—In[£2+i8) 1+3ir} ) (3.7)
for 2>0. When z is not too small, it will be a reasonably

good approximation to replace In(2-+£) in the integrand
by In2, and replace In¢ by the average

[ f dEe_"’E]_ f dte % Inf=—In(kz)—y. (3.8)
0 0

With these replacements, (3.7) becomes

M (z)=i(2mz) e (2Q0—In(2/ kz)+y—}im) ™
— (2—In(2/kz)+y+3im)~' ] (3.9)

Therefore, f1°|M (z)|dz exists. The same statement
is true of Li(—s3). If the integral equation had been
written in terms of the electric field instead of the
vector potential, the corresponding M and L, functions
would not have this property, ie., they would not

¢T. T. Wu and R. W. P. King, J. Appl. Phys. 30, 76 (1959).
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approach zero sufficiently rapidly. The rapid decrease
of M and L, implies that the behavior of A for 2>k is
relatively unimportant in the present calculation. As
will be seen in Sec. 8, the condition that M and L,
should decrease sufficiently rapidly dictates the choice
of the differential operator that gives E from 4.

4. Application to the Dipole Antenna

To apply the results of the last two sections to the
dipole antenna, it is convenient to define for Z>0.

5(2)= f i ©) f dz exp(—itz)

XsinkzH(Z—3z), (4.1)
1@2)= [ @) [ dsexp(-ica)
X[coskzH (Z—z)—exp(—ikz)], (4.2)
S'(Z)= f deL, (t) f dz exp(—1it2)
0 ’ XsinkzH(Z—3), (4.3)
and .
T'(Z)= f deL (©) f dz exp(—if2)
o 0
X[coskzH (Z—z)—exp(—ikz)], (4.4)

where H is the Heaviside function
1 x>0

Hix)= {0 x<0.

By comparing (1.2) and (1.4) with (2.1), it is seen that
for the dipole antenna and for >0

F(g)=4nitq[C cosk(k—3)

+1sink|h—3z| JH(2h—2), (4.5)

which may be alternatively expressed as

F(2)=4xit o sinkh coskzH (h—2)
—coskh sinkzH (h—2)+4- (C coskh—% sinkh)
X coskzH (2h—z)+ (C sinkh—+% coskh)

XsinkhH (2h—2)]. (4.6)

When this is substituted into (2.17), the result is,
using (4.3-4.4),

sinkhT" (k) — coskhS’ (h)+ (C coskh—% sinkk) T’ (2k)

+(C sinkh+% coskk)S’(28)=0. (4.7)
The constant C is thus explicitly given by
= —3{coskhT’(2k)
+sinkhS’ (2h) T sinkh[ 2T (h)— T’ (2k)]
—coskh[25'(B)—S'(2k)]}. (4.8)

TSUN WU

On the other hand, it follows from (4.5) that the input
admittance of the antenna is

Y =2it [S()+CUH)], 49)

where

U(Z)= f dcM (g')f dz exp(—i¢z) coskz.  (4.10)
co —z

In order to put (4.8) and (4.10) in forms that are
easily computed, many approximations have to be
made. In (4.1-4), the contour Cy can be deformed so
that it is wrapped around the left-branch cut. When
kZ is not too small, the contributions to the four
functions, insofar as the { integral is concerned, come
mainly from the region |¢+%|Z< 1. On the other hand,
from (2.8), L.(¢) is the same as M ({)L_({), where
L_(¢) is analytic in the vicinity of = —%. Therefore,
approximately

S"(Z)=L_(—k)S(2), (4.11)
and
T'(Z)=L_(—®T(Z). (4.12)

Since dipole antennas with kA<« are well understood
in terms of the King-Middleton theory, the task here
is thus to calculate S(Z), T(Z), and U(Z) for kZ large.
This is carried out in Appendix A, with the results

25(2)
= —In[14i(Q—In2)~]
— (r2/12)[(Qo—2 In2)~2— (Qo—2 In2+4i)2]
+In{[Q:(2) 1'25(2)}
+3v'{[2(2) 12— [Q:(2) ]2} —i(2k2)
Xexp(2tkZ){[Q.(Z2) ' —[Q:(2) T},
—2%T(Z)
= —In[14-7i(Q—1n2)~1]
— (12/12)[ (Q0—2 In2)~2— (Q2p—2 In2+4-75)*]
—In{[©:(2)172:(2)}
=37 {[Q(2) T2 [Q:(2) ]2} —i(2kZ)

(4.13)

Xexp(BRZ){[Q(Z)1—[Q:(2) 1}, (4.14)
and
iU(Z)=In{[2:(2) 17'Q:(2)}
+37'{[2(2) 2 —[2:(2) I} 41 (2kZ)
Xexp(2ikZ){[Q(Z) T~ [2:(2) ). (4.15)

In (4.13-4.15), the following symbols have been used:

(2) =2(Qo—1In2)+In(2kZ)+y—in/2,  (4.16)
Q3(2)=2(Q—In2)+1n(2kZ)+v+3ix/2, (4.17)

and
¥Y'=T"(1)—%2 (4.18)

7' is numerically about 1.6449.

S. The Radiation Field

The procedure of Sec. 4 may be used to get the
current distribution not close to either the generator
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or the ends. However, this point is not studied further
because excessive numerical computation seems to be
necessary.

Let a spherical coordinate system (r,0,¢) be set up
such that the ends of the antenna are at (%,0,¢) and
(h,x,$). All field quantities are independent of ¢ because
of rotational symmetry. Define the field pattern by

F(0)=—lim E4(r,6)r exp(—ikr). (5.1)
By (1.2), this is
3 T
F(6)= icoo(dr) sing f dal (2) (2m) f a
—h —T
Xexp[—ik(z cosf—a cosf’ sind) |. (5.2)

When the small term proportional to ¢ is neglected,
this simplifies to

F(6) = twpo(4w) 1T (k cosf) sind. (5.3)

Within the framework of the present approximation,
this is simply
sin[ k% (1—cosf) ]
F(6)=—1 sinf[Q—In sin0]—ll C——
1—cosf

+Csin[kh( 1—cosf) ] _Ll 1—cos[ kh(1—cosf) ]

14cos 2 1~ cosh
ll—cos[kh(l—i-coso):]]. (5.4
2 1-+cosé

This differs from the usual zeroth-order field pattern
only in the appearance of the factor [2;—In sinf]!
when C is chosen in a sufficiently simple way. For a
long dipole, this factor has the effect of reducing the
end-firing major lobes.

PART II. GENERALIZATIONS
6. Back-Scattering Cross Section

In this and the two following sections, the procedure
of Part I is to be applied to three situations mathe-
matically similar to the one already treated. The first
problem is the determination of the back-scattering
cross section of an unloaded dipole antenna at normal
incidence. The geometry is shown in Fig. 3. Without
loss of generality, the incident electric field is taken
to be 1 at x=0. Since the radius ¢ of the dipole antenna
is assumed to be very small compared with the wave-
length, the scattered field is considered to be rotation-
ally symmetrical. Under this approximation, the
current induced on the antenna satisfies the integral
equation:

f d2'1,(7)K (z—2')= 4wt (uow) ' [14C, coskz]. (6.1)
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Einc
Fi1G. 3. The receiving dipole
of half-length 4.
o| —F—x
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Here the subscript s is used to distinguish the present
scattering problem, and the constant C, is to be

determined from the boundary condition
I,(h)=0. (6.2)

In terms of 7,, the back-scattering cross section is

j; h dzl,(2)

Within the framework of the approximations used in
Part I, this is given by

op=4w || 2| k+C,k sinkh|2

2
o= (41(')—1(.02[&02 . (63)

(6.4)

Without the C, term, this is just the nonresonant
formula of Chu.”

As in the case of the driven antenna, the value of C,
is to be determined from (2.17) with the following
form for F,

Fo(z)=4mi(uw) [14C; cosk(k—2z) JH(2h—2). (6.5)
It is thus useful to define
Vo= [ &L [ demp(-ico
o 0
X[H(Z—2z)—exp(—ikz)]. (6.6)
Thus, C; is given by
Cy=—V'(2k)/[coskhT' (2h)+sinkhS’ (2h)], (6.7)
or approximately with (4.11-4.12)
o=—V'(2k)Ly(k)/[coskhT (2h)+sinkhS(2k)]. (6.8)

7L. J. Chu (private communication). See also J. H. Van Vleck,
F. Block, and M. Hamermesh, J. Appl. Phys. 18, 274 (1947).
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From (6.6), V' is found to be

V@=2LOHL W [

—o0

Xexp(—itkZ){[22—In({2— 1)1

—[2Q—In(2—1)+2x ]}, (6.9)
For kZ large, this is approximately
V'(Z)L1(k)=2xL.(0)L(k)
+2e*Z{[Q(Z) T —[Q:(2)T}. (6.10)

To avoid numerical integration, it is convenient to use
L ()L ()~ (22,7 (6.11)

The explicit formula for the back-scattering cross
section is given by (6.4), with (6.8) and (6.10-6.11).

7. The Two-Wire Line

In principle, the method of Part I is applicable to
the case of a system of two identical, nonstaggered,
parallel dipole antennas as shown in Fig. 4 provided
that it is admissible to assume that the current distri-
bution is rotationally symmetrical on each dipole.
This assumption is reasonable if the antennas are thin
and if the separation b between the antennas is not too
small. If the symmetrical and antisymmetrical parts
of the currents are used to set up integral equations,
then the present case differs from the case of a single
dipole only in the appearance of a more complicated
kernel. For example, the kernel for the antisymmetrical
part of the current is

K.(2)=K(2)— (2240 exp[ik (224+89)1], (7.1)

TAI TSUN WU

with the Fourier transform
R.(©)=K @) —miH,®[b(R2—)].

The kernel K, for the symmetric part of the current
differs only in a sign.

Besides @, this problem is characterized by three
lengths: A, %, and 4. In the general case, it seems
difficult to get easily computable formulas from these
kernels. When k61, the Hy® in the Fourier trans-
forms of the kernels may be replaced by a logarithm,
analogous to (3.1). In particular,

K's(f)=2{291,—In[(k2—§'2)/k2]},

(7.2)

(7.3)
where
Q1.=1n[2/ (k2ab)¥]—r. (71.4)

A well-known result follows immediately from (7.3-7.4),
namely, that the equivalent radius of this antenna
system is (eb)} [K, p. 275]. In more general cases, the
present point of view reproduces all the results of
Harrison and King?® on effective radii.

In the remainder of this section, the following special
situation of the antisymmetrical case is to be considered

kN1, (7.5)

Furthermore, attention is to be restricted entirely to
the approximate determination of the total power
radiated and the capacitive end correction, both topics
outside of the realm of conventional transmission-line
theory. An important difference between the present
case and that of a single dipole antenna is that K,({)
is bounded in the vicinity of {=—% while K(¢) is not.
Consequently,

Li(~k)=0, but L,.,(—k)=O0. (7.6)

Note that Eﬂ(g‘)_ etc. are defined analogous to L.
etc. except that K, (¢) is used instead of K({). Because
of (7.6), (4.4) cannot be generalized to the present case
without modification. Instead, define

VA
Wi(2)= d:f;a(;)[ [ dzexp(-itssins

+f dzexp(—i;‘z—ikz)]. (7.7)

If for large 2Z only terms of the orders Z° and Z! are
kept, W’ may be evaluated approximately to be

W' (Z)=2xLya(k), (1.8)

and
2 2
W_'(Z)=2nL..(— _ 7.
(€)= 2Ll k)[l 4Zln(b/a)] (7.9)

8 C. W. Harrison and R. W. P. King, Trans. IRE AP-9, 171
(1961). See also, C. W. Harrison, Ph.D. dissertation, Harvard Uni-
versity, 1954,
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The constant C, in the integral equation for the current,

f 47 L, (2)Ka(z—2)

=4mi¢ 1 C, coskz+3 sink|z| ], (7.10)

is determined from the boundary condition 7,(%)=0.
It follows from (4.6) and (7.7) that

Co=Hi[ " W_! (2h)+-e~¥W., (2h) T
X (e [2W_ (h)—W_' (2h) ]
—e®2W () —W, (2k) ]}, (7.11)

In this formula, insofar as L,4(¢) is concerned, only
the ratio

Lyo(—k)/L,o(k)=T exp(2ikh,) (7.12)

enters. Equation (7.12) defines the real numbers I' and
k.. The quantity . is to be interpreted as the apparent
change in line length due to the capacitive end
correction. In the language of transmission-line theory,
k. is equal to the apparent terminal capacitance divided
by the capacitance per unit length of the infinite line.
The substitution of (7.12) into (7.11) gives

Co= —2&[1+(1—%)A]_1[1— ( 1—2%)1&], (7.13)

where
a=1kb/In(b/a), (7.14)
and
A=T exp[2ik(h+h.)]. (7.15)
In terms of C,, the input admittance is®
Vo=2it [ Sa(B)+CoUL(B)], (7.16)

where S, and U, are analogous to (4.1) and (4.10),
respectively :

Se(Z)= f AR ()] f dz sinkz

Xexp(—itZ), (7.17)
and
z
U Z)= | &R f dz coskz
“ ' Xexp(~itz). (7.18)

It may be noted that (7.16) is correct only to (kk).
The reason is that a term of the order (k%) must be
added to correct for the fact that 4 (z) does not vanish
for |z > k. When kZ>>1, the function U, of (7.18) may
be evaluated by the procedure used to derive (7.8-7.9):

Us(Z)=n[In(/a) I [1—~ie/(kZ)].  (7.19)

The radiation conductance G* is just 2 ReY,, since the
driving voltage has been taken to be 1. The factor 2
here comes from the fact that there are two wires. It

? This S, has nothing to do with that of reference 3.
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follows from (7.16) that

Ge= —4¢ [TmS,(B)+ImC,U, (W) ].  (7.20)

This is fortunate since the imaginary part of S, is
simpler than the real part.

So far, only the simplifying assumption (7.5) has
been used. In order to get explicit and useful answers,
the further assumption that k<1 is to be made. In
this limit, the first few terms for T, #. and ImS, (%) are
found in Appendix B to be

e — k22 {1_@[1_1n(kb)+7—11/6]}’ (7.21)
41n(b/a) 6 L4 In(b/a)
b “dEl Io(at/b)Ko(at/b)—Ko(§)

hc= —_— — In y (7.22)
TJy £ In(d/a)
and
kR
ImS,(h)=—————
2 4[In(b/a)?

Bl In(kb)+y—11/6
x{l_?[1_2 In(b/a) ]] (7.23)

The substitution of (7.13), (7.19), and (7.23) into
(7.20) gives

o 2 b
Ge=————‘ —Z In- ImS, (k)
coln@/a)l = a

1—T2—3aT sin2k(h+h.)/kh }

£
" 1+T2 T2 cos2k(h+he)+a sin2k(h+hy)/kh]
(7.24)

The term “near resonance” shall be used to refer to
the situation where |C,| in (7.20) is of the order of
magnitude (%b)~2 Near resonance, the first term in the
braces of (7.24) is smaller than the second by a factor
of the order (kb)~*, and hence may be neglected. As a
function of %, the second term shows sharp maxima in
the vicinity of k(k+k.)~ (n+3)w. From the point of
view of carrying out experiments on the power radiation
from a two-wire line, the widths of these resonances
are of interest. Let 6 be the total half-power width, i.e.,
the interval on the % axis where G° is larger than half
of the maximum value of G¢, then

k5= —InT,, (7.25)

independent of #. This is accurate to the order (kk)™
but not (kk)~2

In (7.22), k. is expressed in terms of an integral with
the relative error (kb)2.. This integral remains to be
evaluated numerically. When In(b/a)>>1, a condition
almost never fulfilled in practice, an approximate
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evaluation is possible:

b~ (b/m)[In(b/a) ]~

% f e [Ko(§)—In(2/8)+v].  (7.26)

This integral can be evaluated by shifting the contour
of integration and applying the Weber-Schafheitlin
integral:

he~3b/In(d/a). (7.27)

This formula is due to King,® whose derivation is much
simpler.

Equations (7.22) and (7.24) give the required answers
on the two-wire line. However, it is desirable to calculate
the so-called radiation resistance for comparison with
the theory of Storer and King.!' Attention will be
restricted to the case k<1 and k#>>1. The radiation
resistance Re is defined as G¢ divided by the square of
a ‘“maximum” current. In the theory of Storer and
King, a sinusoidal current is assumed on the two-wire
line, and thus this definition is meaningful. From the
present point of view, the various current “maxima”
are of slightly different size and thus R is not precisely
defined. Let

Tnax=2{07(|C*4+-3)n/In(b/a).

Up to (kh)~, this approximates the maximum currents
near the driving point with an error of the order (kb)~2
in general, but of the order of (k5)~* near resonance.
With the definition

Re=1 102G,

(7.28)

(7.29)
Re 15 given by
Re=7"0In(b/a)[1+T%—al sin2k (h+-he)/ (k) T

X{[— (2/r) In(6/a) ImS, (k) JL1+I*
+2T cos2k (h-+h.)+al sin2k(h-+hy)/ (kh)]

+1—T2~3aT sin2k(h+h.)/ (kh)}. (7.30)
The leading term of this is
Re= (4m) I ok2b?
X[2+cos2k(h+hc)—w]. (7.31)

Except for the end correction #,, this is derived by the
method of Storer and King in Appendix C. Near
resonance, however, the present procedure gives more
information. Here, the first term in the braces of
(7.30) may be neglected. Since I''—TI'~~—2InI' and

©®R. W. P. King, Transmission-Line Theory (McGraw-Hill
Book Company, Inc., New York, 1955), p. 367.

u 7, E. Storer and R. W. P. King, Proc. Inst. Radio Engrs. 39,
1408 (1951). :
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I'~14T'~2, (7.30) reduces near resonance to

sin2k(h+h.)
Re=z7In (b/a)[l-}-a———z—;}—;—-—]

sin2k (h+h,)
x[—lnr-3m—~——}. (7.32)

Furthermore, near resonance, the quantity sin2k{h+%.)
is of the order of (kb)?, so that the first bracket may
be neglected. The substitution of (7.14) and (7.21)
into (7.32) gives finally

- \ __k‘zbz E*In(kb)—}*'y—ll/fi
= ()50 (R) {1 6 [4 In(b/a) ]
3 sin2k (h-+c)
—_—t (73
2kh } (7.33)

Right at the point of maximum power radiation, the
last term is negligible with the result

Re=—n"1¢ In(b/a) InT
= (4m) 7 o(kb)?

kr1 In(kb —11
X{l_.__[___".iﬁl__ﬁ]}_ (7.38)
614 In(b/a)

Note that, from (7.25), (7.34) may be written as

Re=FESR,, (7.35)

where R, is the characteristic resistance of the infinite
two-wire line. Equation (7.34) has been previously
reported.’?

It should be emphasized that all results in this
section depend on the initial assumption of a rotation-
ally symmetrical current distribution on each dipole.
In the language of transmission-line theory, the
proximity effect of the two wires has been neglected.
This leads to a relative error of the order of (a/5)? in
all the physical quantities studied.

8. The Dielectric-Coated Antenna

A dipole antenna with a thin layer of. dielectric
material on the outside has many interesting properties.
When the antenna is relatively short, its behavior
does not differ much from the dipole without the
dielectric. When it is relatively long, it behaves more
like a transmission line than an antenna. In this
section, this dielectric-coated antenna is to be studied
only from the point of view of illuminating certain
essential points of the procedure used in this paper.

2 R. W. P. King, “Quasi-stationary and nonstationary currents
in electric circuits,” in S. Fliigge, Encyclopedia of Physics, Vol. 16
(Springer-Verlag, Berlin, 1958), p. 232. The footnote reference 3
mentioned in this article has never been published.
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Although this problem is an extremely interesting one,
no quantitative calculations will be made since no
systematic experimental data seem to be available for
this type of antenna.

The present procedure depends on the solution of a
Wiener-Hopf integral equation. Therefore, it is essential
that the geometry of the problem be translationally
invariant in the direction of the antenna after the
removal of the perfectly conducting dipole antenna.
Accordingly, in studying the dielectric-coated antenna,
the dielectric layer is assumed to extend to infinity in
the =z directions. When the dielectric tube is suffi-
ciently small in cross section to support no “mode,”
these extensions may be expected to make no significant
difference. The geometry of the assumed model is
shown in Fig. 5. To avoid unnecessary complications,
the dielectric material is assumed to be nonmagnetic
with a dielectric constant e= e, > €.

The problem of setting up an integral equation
analogous to (1.2) is not entirely straightforward. It
follows from the time-independent Maxwell’s equations
that, for this geometry, a current distribution

J=85(r—a) exp(—i{z) 8.1)
leads to the following electric field at r=a:

E,(a,2) = a(iwer))'G(¢) exp(—itz), (8.2)

where

G()= (=) {In[ (&*—{*)%/2]+v—mi/2)

— & 1(k2—¢?) In(b/a). (8.3)
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Fic. 6. The contour C;.

This is approximately valid, in the same sense as (3.1),
when

o1, (8.4)
where

k= ¢tk (8.5)
So far as branch cuts are concerned, G(¢) has the
same structure as K(¢). On the real axis, when {>%,

(8.3) gives

G(©)=—(*—#){ln[ >~ #)%/2]+7}
— & (k2= In(b/a).  (8.6)

It follows that on the real axis when {>k, G(¢) is real
with one zero between %2 and %'. Call this zero {=ks.
A more accurate calculation indicates that this zero
is actually located slightly above the real axis. Thus,
within the present approximation, all integrations
along the real axis in the { plane should be carried out
with the contour C; shown in Fig. 6.
Formally, this zero of G({) at { =44 leads to

8.7)

lim
20

f & exp(ics)[G ()T |=o.

However, for the procedure of Part I to work, the
inverse Fourier transform of M must approach zero
sufficiently rapidly as z— . In order to get the
kernel K, it is thus necessary to remove from G({) the

zero at {=ky. The simplest way to remove this zero is
to define

Ka(0)=2("~k2)7G(). (8.8)

With this definition, it follows from (8.2) that, in the
present case, the integral equation for the current is

h
d7'14(3"NKq(2—2'),

—h

Aa(z)= (4m)"uo (8.9)

where K; is the inverse Fourier transform of K, and
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A4 satisfies
[(/dz®)+ka* ]Aa(z) = iwnoed (2), (8.10)

for |z|<h. By symmetry and for |z|<h, Aa(z) is
given by,

Aa(z)=peit i (Cy coskaz+3 sinky|z[), (8.11)

where

$a= (weo) k. (8.12)

Equations (8.9) and (8.11) are analogous to (1.2) and
(1.4), respectively. But it should be emphasized that
Ag is not the vector potential for this problem. From
this point of view, the use of the vector potential in
Part I may be considered to be coincidental.

As before, the constant C; in (8.11) is to be deter-
mined from the boundary condition

I;(k)=0. (8.13)

Thus, the present problem is formulated in terms of an
integral equation entirely analogous to that of the
dipole antenna without dielectric coating, the only
difference being in the kernel. In principle, the pro-
cedure of Part I may be applied here, but the details
are somewhat more complicated. Without going into
the details, however, several qualitative statements
may be made about this antenna by considering the
kernel. First, unless &/a is very large, which is not
feasible practically, %; is quite close to k. Thus, the
thin dielectric coating makes only a slight modification
on the behavior of the dipole antenna unless the
antenna is at least several wavelengths long. On the
other hand, when z is large, the behavior of K;(z) is
determined almost entirely by that of K;(¢) in the
vicinity of the singularities at {= k. In this vicinity,
Ka(¢) is qualitatively very similar to K,(¢) of the last
section. Accordingly, a long dielectric-coated antenna
behaves like a transmission line. In particular,
lim;Cq in (8.11) does not exist. That is, the end of
the antenna has a profound effect on the current
distribution near the driving point no matter how long
the antenna is. This is typical of a transmission line.
This is also in agreement with the experimental
observation that any abrupt bend in the antenna
causes significant radiation. Moreover, the present
point of view makes it possible to make a semi-
quantitative statement: a bend causes appreciable
radiation unless the radius of curvature of the bend is
much larger than A (ks/k—1)"1.

In order to make a quantitative comparison with
the approach making use of a surface impedance
[K, p. 28], it remains to define the equivalent radius
and the equivalent surface reactance. This is done by
writing the G(¢) of (8.3) in the form

G()= F—){In[(#—¢H)%/2]
—& ! In(b/a)+y—i/2}

~ & 1(B*—F) In(b/a). (8.14)
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The second term of (8.14) gives immediately the
surface impedance per unit length

gt=—iwl, (8.15)
where the inductance per unit length L is
L=pe(2m)In(b/a)(1—e&). (8.16)

On the other hand, the first term on the right hand of
(8.14) gives the equivalent radius g4 in the form

aq=b(a/b)V e, (8.17)

A dipole antenna of & with a dielectric coating of
relative dielectric constant ¢ and thickness b—a is
equivalent to a dipole antenna of radius a; and surface
impedance per unit length —dwL.

PART III. NUMERICAL RESULTS
AND DISCUSSIONS

In the process of getting results that are sufficiently
simple to be useful, many approximations have been
made. Since a mathematical estimate of the error
seems impossibly difficult, several numerical calcula-
tions have been carried out to give some idea of the
accuracy and the range of wvalidity of the present
theory. The following results seem to be particularly
useful in this respect.

First, the back-scattering cross section of an unloaded
dipole receiving antenna has been obtained for one
value of a/\, using the formulas of Sec. 6. In Fig. 7,
the theoretical results are shown together with the

32 [l T T [ T T T i [ T T
N THEORY |
— —— EXPERIMENTAL DATA
o8l OF SEVICK I
————— EXPERIMENTAL DATA
- OF SCHMITT | .
’i\\ |
20} \ II \./_
1
o/ - \ -
i > /
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osf- f| / | i
I“\ N/
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o4 .
- Y i
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I 1 | 1 1] ! ! i L ! 1
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kh

F16. 7. The back-scattering cross section of an unloaded
dipole receiving antenna.
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experimental data of Sevick [K, p. 516 ] and Schmitt.!?
Both the theoretical curve and the experimental curve
of Sevick pertain to the parameter a/A=0.0035, but
that of Schmitt is for ¢/A=0.0041. When the dipole is
not too short, the theoretical results are in fair agree-
ment with the experimental data. When there is strong
interference between the resonant currents and the
nonresonant currents as described by Chu,” some
discrepancy occurs, both between the theoretical
results and the experimental data and between the
two sets of experimental data. The large discrepancy
with Sevick’s data for relatively large values of %k
may be traced to an inadequacy of his experimental
setup. Since the transmitter was not sufficiently far
away from the scattering dipole, the wave front was
not planar along the length of the antenna. This effect
alone can be estimated to make an error of about 309,

005 =1

1 1 1 1
0 0.05 Y] 0.5 0.2 025
a/b

Fi6. 8. The end correction for an open-end,
two-wire transmission line.

in the back-scattering cross section for kk=12.YFor
kh>2, the present results are in more satisfactory
agreement with the experimental data than any
previous theory that yields sufficient numerical®results
for comparison.

Secondly, the end correction for an open-end two-
wire transmission line has been computed from (7.22).
The results are shown in Fig. 8. The author has found
just one piece of experimental data which was obtained
by Tomiyasu® for a/5=0.0794. The experimental
result is larger by a factor of 2. It is not clear how
accurate this experimental point is, but the author is
of the opinion that it may be in error. Further experi-
ment seems very desirable on this problem. An attempt

BR. W. P. King and T. T. Wu, Tke Scattering and Diffraction
of Waves (Harvard University Press, Cambridge, Massachusetts,
1959), Fig. 49, p. 161. In this figure the curves for ¢=0.132 and
a=0.026 should be interchanged.
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F16. 9. Positions of antiresonance (X) and maximum resistance
(R) as functions of the radius of the antenna.

has also been made to calculate the end correction
from the alternative formula

b 2 dt Io(at/b)[Ko(at/b)—Ko(£)]

h/=—— ] —In .
(1

wJy £ In(b/a)

The results are changed by no more than 2.5%,.

By far the most extensive calculation is that for the
input impedance of the center-driven dipole antenna.
This was carried out on an IBM 650 on the basis of the
results of Part I. The numerical results are shown in
Table I. No systematic analysis of these extensive data
has been carried out yet. Up to about one wavelength,
where comparison is possible, the results are in excellent
agreement with the King-Middleton second-order
values® with one exception. This one exception is that
the first antiresonance occurs at a significantly shorter
length of the antenna, particularly when the antenna
is fat. However, when the results are compared with
the experimental data of Hartig [K, pp. 232-238], it
is seen that the results of the present theory is closer
to the measurement, as shown in Fig. 9. It may also
be noted the present result takes the form of an
algebraic expression involving only elementary func-
tions, while the second-order formula of King and
Middleton involves integrals of integrated sine and
cosine functions.

It may thus be concluded that the present theory
gives results that are in excellent agreement with what
is already known unless the antenna is quite short,
and of course gives new results in many cases, particu-
larly when the antenna is long. Furthermore, although
so far the discussion has been restricted to non-
dissipative media, the entire theory may be applied to
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Taste 1. Input impedances of the center-driven dipole antenna in ohms.
a/N

kh 0.001191 0.001588 0.002381 0.003175

140 17642 + 270405 1752 + 247.59 1783 + 216424 18430 + 194425
141 27473 + 212418 27497 + 194433 28e51 + 169e42 29415 + 151496
142 38454 + 156479 38498 + 143410 39487 + 124401 40081 4 110467
1e3 50652 + 102445 51e24 + 92460 52462 + 718490 56000 + 6938
YN 64435 + 47,97 65646 + 41474 67«51 + 33414 6951 + 27.25
1.8 80e86 = 7475 82449 = 10448 85447 = 14els 88433 = 16447
le6 101407 « 65¢74 103442 =~ 65401 10771 = 63476 11178 = 62450
1e7 126438 =~ 127409 129476 = 122484 135491 =~ 116451 141e74 = 111448
1e8 158480 =~ 192492 163465 =~ 184494 172449 = 173411 18086 =~ 163481
149 201425 = 264437 208426 <~ 252420 221404 = 233496 233411 = 219440
240 258317 ~ 342440 268435 ~ 325,13 286488 = 298464 30428 =~ 276480
241 336036 = 427425 351419 = 403,09 377497 = 364466 402464 ~ 331a47
242 446042 ~ 517.04 467484 = 482437 505458 = 424458 538472 =~ 372407
243 604046 =~ 604415 634407 -~ 551466 683e11 = 459499 72104 =~ 373484
2e4 832e15 = 666478 867489 =~ 582441 916495 = 432401 940033 =~ 293405
245 1147633 =~ 652437 1172411 = 514452 1177453 = 279437 1138469 =~ 84,24
246 1820490 =~ 464439 1484403 =~ 263,10 1360489 + 34015 1209418 + 231465
247 1798430 =~ 25,79 1635453 + 182403 1341445 + 420041 1100.18 + 530,98
248 1763687 + 533420 1501033 + 637465 1133439 + 709406 888.09 + T07.87
249 1443¢79 + 928416 1189¢24 + 905,29 870.06 + 835410 6The35 + T63486
340 1065443 +10714%6 875486 + 980411 643485 + B45.90 503e34 + TABe4S
3e1 T61e55 +1057473 634402 + 948434 475.%59 + 801a18 37790 + 701647
342 547434 + 979435 463436 + BT44T4 356411 + 736430 288414 + 843491
343 401415 + 883422 345425 + 790444 271477 + 667438 223487 + 585,15
3e4 300493 + 787475 262497 + 707469 21171 + 600471 17742 + 528477
345 231614 + 698483 204483 + 630441 168044 + 538424 143454 + 475480
346 181e78 <+ 617455 163421 + 559,26 137,00 + 480417 118471 + 426420
3.7 146449 + 543,24 133421 + 493468 11415 + 425499 10062 + 379453
3.8 121¢26 + 474278 111669 + 432474 9775 + 375403 8774 + 335,21
3.9 103450 + 410495 96459 + 375.46 B6e43 + 326455 7907 + 292466
be0 91686 + 350464 86662 + 320494 7930 + 279485 73498 + 251431
el 84439 + 292488 8095 + 268433 75485 + 234431 7217 + 210464
b4e2 81639 + 236475 T9¢13 + 216489 7583 + 189433 T73¢51 + 170416
be3 82428 + 181.48 81400 + 1585491 79423 + 144435 78412 + 129439
bods 87405 + 126429 86465 + 114476 86430 + 98484 8635 + 87490
4e8 9%497 + 70450 96¢43 + 62480 97450 + 52431 9875 + 45.28
bet 109459 + 13441 110697 + 9445 113061 + 4431} 11662% + 1419
bl 128482 ~ 45,65 13129 - 45,85 135482 = 45454 14013 = 44456
448 1554046 = 107427 158487 =~ 103456 165480 = 97442 17226 = 91492
449 190427 =~ 171494 195489 =~ 163,91 205495 =~ 151e16 215022 = 140426
840 237¢43 = 239480 245443 - 226470 259461 <~ 205480 272445 = 187.89
LT 300471 = 310427 311483 =~ 290,69 331423 =~ 258488 348429 = 231,13
502 386400 = 381420 400497 - 352,64 426028 = 305409 44Te28 =~ 262470
543 501e146 = 447421 520013 = 405,33 550408 = 334406 571eB7 =~ 269482
Se4 655031 =~ 496461 676024 = 434440 704400 = 327483 T16e90 =~ 233436
5e% 855411 =~ 506469 870401 =~ 4l4474 876486 = 261422 861400 =~ 133.27
546 1093016 =~ 440440 1082475 =~ 311495 1034403 = 112487 963.50 + 34438
5.7 1327440 =~ 256459 1261435 =~ 101487 1120474 + 108451 984422 + 238447
548 1672473 + 4B¢5%6 1331434 + 189,451 1098441 + 348453 916459 + 424,02
569 1453¢39 + 397484 125773 + 476481 981490 + 540432 793470 + 551427
640 1283447 + 676488 1082472 + 679486 822461 + 653424 656486 + 815,12
6ol 1049400 + 831,49 878482 + 779491 665009 + 696454 53191 + 631415
62 823491 + 880412 693481 + 802,22 530433 + 693471 42806 + 617461
643 638067 + 863474 543073 + 778482 422449 + 665403 3645:39 + 587,98
604 495092 + B14460 827468 + 732.5%6 338461 + 623458 280073 + 550448
6e% 388452 + 751461 339447 <+ 676459 273496 + 576473 230443 + 509472
66 308409 + 684eé1 272462 + 617465 224419 + 528428 191633 + 468403
7% 4 247471 + 617445 221487 + 558492 185487 + 480404 160495 + 426455
68 202e24 + 552454 183429 + 501470 156041 + 432474 13748 + 385,70
6e9 168402 + 490418 154407 + 446435 133.97 + 386455 11961 + 345,54
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T40 142¢50 + 430,27 132623 + 392,77 117625 + 341437 106640 + 305495
Tel 12394 + 372441 11643 + 340,64 1056435 <+ 296492 9728 <+ 266070
Te2 111615 + 316409 10575 + 289453 9T7eTh + 252489 91488 <+ 227450
Te3 103642 + 260,76 99¢66 + 238,99 94011 + 208,90 90409 + 188405
Teb 100633 + 205,87 97692 + 188,53 S4eh2 + 164458 91498 + 148403
Te5 101e79 + 130,86 100484 4+ 137,68 98¢85 + 119456 9785 + 10715
Teb 108400 + 95,17 107481 + 85,98 10784 <+ 73.49 108426 + 65413
Te? 119642 + 38,30 12030 + 32,99 122412 + 26407 124405 + 21461
Te8 136689 - 20426 138495 = 2465 142478 = 22487 146645 = 22484
Te9 161470 = 80,488 165016 =~ 78619 17138 =~ 73030 177614 = 68449
840 195069 =~ 143,77 200488 =~ 136457 210608 = 124473 218440 <« 114624
8ol 24148 = 208,70 248486 =~ 196421 261e73 = 175485 27309 =~ 158409
8e2 30270 = 274464 312476 =~ 255445 329091 -~ 223490 344045 = 196419
843 384014 = 338,98 397622 <~ 310,672 418654 = 263454 435029 = 221474
Bek 491673 - 396419 50733 =~ 35%,02 530059 = 28%¢52 545486 = 224402
845 631e42 <~ 435,83 646484 = 375,93 66482 ~ 275,51 66976 =~ 188486
8e6 805470 =~ 438,93 813441 =~ 354,13 810614 = 215484 789428 = 103460
8e7 1005464 = 379449 990e34 <~ 266427 940420 = 93494 875668 + 31496
8e8 1199426 =~ 231,10 1139664 <~ 98442 101790 + 82441 901e9& + 196016
89 1329462 + 7456 121174 + 131,97 1016654 + 277477 86183 + 352444
940 1344408 + 289,48 117907 + 370,499 940689 + L4ubeT7 TT7384 + 4T1al6
el 1239471 + 538,90 1060408 + 561,04 821655 + 562408 66567 + 542494
942 1064473 + 708430 900473 + 676487 69135 <+ 622415 558469 + 574023
93 874497 + 785,26 T40669 + 725,97 570679 + 639469 463468 + 576476
Sels 703682 + 801438 600621 + 728457 468601 + 629441 383,86 + 561412
95 562451 + 778455 484277 + 703424 383489 + 602470 318460 + 534,84
9eé 450449 + T34480 392078 + 662,80 3166435 + 587403 265092 + 502471
97 363418 + 681,404 320439 <+ 614,98 262057 + 526485 223463 + 467456
948 295448 + 623,28 263.70 + 564,08 219488 + 484465 189482 + 430499
949 2643405 + 564461 219438 + 512,33 186014 <+ 441,76 16292 + 393483
10,0 202455 + 506446 184488 + 460,79 159467 + 398,479 141677 + 356445
1061 171647 + 449435 158629 + 409,85 139622 + 355494 125¢51 + 318496
1042 148403 + 393,35 138426 + 359455 123494 + 313,22 113653 + 281431
10,3 130499 + 338,26 123483 + 309,71 113e24 + 270446 105450 + 243435
1044 119¢52 + 283,74 114440 + 260,06 106681 + 227443 101626 + 204489
104% 113016 + 229640 109468 + 210426 104455 + 183,88 100686 + 165469
1046 111971 + 174,80 109461 + 159,94 106661 + 139,453 10457 + 125455
1047 115430 + 119452 114642 + 108,75 11336 + 94,10 112.89 + B4427
1048 124432 + 63413 124461 + 56434 12547 + 47440 12659 + 4&le74
1049 139450 + S5e¢24 14103 + 2445 143693 = 68 14678 =~ 1497
1140 162400 = 54443 164490 = 53,06 170614 =~ 49499 174499 = 4Lbokb
11,1 193446 =~ 115,93 198601 <« 110,03 206003 ~ 99,98 213422 =« 90480
1142 236421 =~ 178494 262676 = 16777 254406 <~ 149432 263491 ~ 133404
1143 293638 <~ 242,35 302028 =~ 224463 31Te24 = 195437 329472 = 169¢64
1144 369400 =~ 303462 380640 = 277426 398470 =~ 233432 41275 = 194460
1145 46784 - 357,476 48lell = 319445 500654 = 255421 512481 = 198,92
116 594eb4 - 295,64 607e12 =~ 340476 621631 =~ 249427 624436 = 171411
117 750629 = 402431 756001 = 325,63 75189 = 201646 733623 = 101408
1148 928413 ~ 356487 914e67 =~ 255:74 87182 =~ 101e57 816695 + 12415
1149 1103498 = 238,461 10564639 -~ 119427 952019 + 46018 8%53¢24 + 153451
1240 123817 = 43,28 113658 + 73,96 969458 + 216499 833465 + 295,32
1241 1277673 + 199,46 1134¢46 + 286441 921496 + 375434 768063 + 411,78
1242 1218622 + 433,03 10534246 + 471,14 828496 + 494,73 678496 + 490472
1243 1084426 +.609,08 924433 + 599,33 T16697 + 567456 583¢61 + 533442
124 920412 + T12.14 782401 + 668432 606003 + 600419 494631 + 547,77
1245 759480 .+ 753,403 648e56 + 690464 506059 + 603¢71 416015 + 542,52
1246 619473 + 751400 533448 + 681463 422404 + 588428 350015 + 524468
1247 504405 <+ 722487 43840 + 653460 352009 + 561631 295.46 + 499,16
1248 411406 + 680426 361eh6 + 614482 29500 + 527468 250058 + 469,09
1249 33721 + 630426 299482 4+ 570439 248475 + 490436 213697 4 436641
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1340 27887 + 576493 250468 + 523,25 211046 + 451408 184428 + 402423
13,1 232096 + 522443 211470 + 474497 181062 + 410481 160e43 <+ 36716
13462 197604 + 467483 181403 + 426436 15804 + 370,00 161:60 + 331047
13,3 169¢32 + 413,54 15732 + 377,73 139485 + 328482 127621 + 295024
1344 148048 + 359464 139456 + 329.11 12645 + 28Te26 116488 + 258444
1345 133462 + 305,96 127012 + 280437 11750 + 245420 110e4% <+ 220495
1346 124621 + 252426 119664 + 231,29 112687 + 202446 10796 + 182460
13.7 119497 + 198,20 11699 + 181460 11264 + 158483 109455 + 143,23
13.8 120094 + 143,42 119434 + 131,01 11713 + 114410 115:.74 + 102470
1349 127¢44 + 87,58 127611 + 79424 126094 + 68412 127.20 + 60093
1440 140,10 + 30437 141403 + 26407 14294 + 20483 144494 + 18403
lbe) 159492 - 28,44 162422 = 28,56 166641 <~ 27461 170633 = 25,463
1462 188437 =~ 88,87 192624 =~ 84448 199604 <~ 76465 205413 = 69416
1463 227451 <~ 150,56 233421 =~ 141,02 263402 = 125406 251e52 = 110479
1406 280407 <« 212,47 287489 =~ 196467 300097 = 170446 311481 =~ 147437
1445 349452 <~ 272432 359456 = 248442 375458 <~ 208465 387482 ~ 173,71
1446 439494 = 325476 451463 = 290454 468066 = 232479 479¢48 = 182,08
147 555413 =~ 365,06 56637 =~ 315440 579¢17 =~ 232495 582443 = 162068
1448 696e54 <~ 377,82 702414 =~ 308,83 700401 =~ 197415 685038 = 106447
1449 858493 =~ 346,79 8649400 ~ 255,77 815003. ~ 115490 76992 = 11,05
1540 1024028 = 253,497 984063 = 144474 900e¢38 + 9485 81627 + 113443
1561 1159616 ~ 92,14 107720 + 20629 934ell + 162667 81383 + 245419
15,2 1224492 + 120476 1100404 + 212477 909625 + 313458 76739 + 360084
1543 1201637 + 341,48 1049441 + 393,35 83T7e68 + 436474 692470 + 446416
1564 1101668 + 524447 946403 + 531441 74089 + 520632 606091 + 498462
1545 860438 + 646439 819437 + 617405 638e23 + 565483 522433 + 523,12
1546 810460 + 708,70 692¢60 + 656452 54177 + 581037 44550 + 526486
157 672642 + 725436 578622 + 662410 456089 + 575088 378480 + 516438
15,8 553488 + 711,66 480059 + 645436 384083 + 556469 322431 <+ 496066
1549 455495 + 679452 399466 + 614494 32481 + 528496 275611 + 471610
1640 376655 + 636489 333457 + 576455 27535 + 496407 236400 + 441490
1601 312478 + 588468 280603 + 533,74 23487 + 460412 203481 + 410441
162 261e84 + 537,73 236493 + 488,57 201497 + 422435 177653 + 377ek4
1643 221040 + 485,58 202449 + 442,21 175e52 + 3B3e46 156038 + 343443
1644 18964 + 433,02 175633 + 395,22 154465 + 343477 139,78 <+ 308456
1645 165¢19 + 380,33 154046 + 347.83 13875 + 303e40 127e34 + 272489
1646 147.09 + 327,56 139415 + 300,405 12T7e43 <+ 262432 118486 + 236436
167 134472 + 274456 129600 + 251.75% 120653 + 220442 114432 + 198487
168 12773 + 221,409 123483 + 202474 118606 + 177455 113490 + 180429
1649 126409 + 166,88 123,72 + 152,79 120631 + 133,55 117497 + 120452
1740 130002 + 111464 129601 + 101,67 12778 + 88429 127617 + 79450
171 140404 + 55,08 140635 + 49,21 141624 + 4loT74 14238 + 37432
1762 157604 =~ 2296 158471 =~ 4465 161484 - 596 16485 =~ 5467
1743 182431 -~ 62450 185449 = 59,73 191610 =~ 854430 196617 = 48468
174 217e66 =~ 123,20 222456 = 115444 230098 ~ 102419 238428 =~ 90414
1745 26551 <~ 184,16 272436 = 170444 283679 ~ 147456 293427 = 127e32
1766 328491 =~ 263,38 337¢79 = 222,13 351,98 ~ 186¢76 362488 <~ 155,72
177 411443 = 29714 421490 =~ 265,493 437428 = 213492 MTe32 = 168464
178 516650 = 338,92 526086 =~ 294435 53922 =~ 220450 54337 - 15750
1749 645477 <~ 358,29 65187 =~ 296439 652447 ~ 195097 642412 =~ 113,81
1840 795481 ~ 340,64 78959 = 258452 T64e2%5 =~ 131406 728422 = 33,80
1841 983422 = 269477 922460 = 169429 854¢49 <~ 24008 78371 + 76029
1842 1091440 <~ 136,21 1024011 =~ 28425 902440 + 113623 796035 + 199432
1843 1176616 + 50471 1068600 + 146444 89738 4 257621 766040 ¢ 314406
1844 1183422 + 258,41 1044610 + 322,03 845,09 + 383408 70536 + 404487
1845 1114659 + 445,27 964e28 + 467456 T62e54 + 475489 628453 + $66407
1846 995066 + 582,77 853405 + 567460 668402 + 533403 548e54 <+ 499,87
1847 85735 + 664944 T33653 + 622481 ST4eTT + 559672 47313 + 511497
1848 722623 + 698,485 620e58 + 642024 489489 + 563465 405488 <+ 508443
1849 601077 + 699429 521402 + 636448 416403 <+ 551490 34777 4 494022




DIPOLE ANTENNA AND TWO-WIRE TRANSMISSION LINE 565
TasLE I.—Continued.

&/ M
[1AN 0.001191 0.001588 0.002381 0.003175
1940 499654 + 677459 436455 + 614428 353435 + 529487 298444 <+ 472494
19¢1 415002 + 642,42 366435 + 581,91 300492 + 501429 287401 + 447,05
1942 346410 + 599,43 308e66 + 543443 25Te45 + 468459 222448 <+ 418,18
1943 290634 + 552,412 261463 + 501440 22167 <+ 433429 193,93 + 387,21
19¢4 245052 + 502,52 223456 + 45732 192450 + 396029 170460 + 354,483
195 209683 + 451,76 193410 + 412,02 16908 + 358,10 151491 <+ 321429
1946 181486 + 400438 169620 + 365491 150478 + 318493 13746 + 286074
1947 160458 + 348457 15111 + 319,13 13718 + 278485 127.02 + 251419
19.8 145029 + 296434 138634 + 271466 128007 + 237483 12053 + 214458
199 135657 + 243,52 130687 + 223437 123¢42 + 195475 118413 + 176481
2040 131631 + 189,492 128412 + 174410 123645 + 152450 120613 + 137480
2041 132664 + 135,429 130.94 + 123466 128458 + 107496 127.08 + 97¢52
2042 140400 + 79439 139467 + 71489 139451 + 62412 13978 + 56003
2043 154613 + 22,07 155417 + 18476 157624 + 1510 159635 4+ 13,464
2044 176417 ~ 36469 178467 «~ 35461 183415 =~ 32466 187623 = 28497
2045 207473 - 96,460 21186 = 90467 21899 = 80423 225019 = T0e44
2046 2506495 -~ 156,489 256490 = 145,430 266486 <~ 125480 275415 = 108442
2047 308454 -~ 215,86 316¢40 = 197425 329402 =~ 166025 338482 =~ 139402
2048 383470 - 270,34 393415 = 242.64 407424 = 196454 416674 = 156442
2049 479661 -~ 314484 489634 = 275410 50155 = 209427 50670 = 152499
2140 598418 = 340,455 604489 = 285,18 608e15 =~ 195404 60176 = 120667
2141 73748 = 334,91 734462 = 260488 717601 = 1464477 689¢15 = 54,458
2142 88771 =~ 283,22 864499 ~ 190486 811423 = 54469 752654 <+ 42623
2143 1027480 =~ 174454 973650 = 71439 871427 + 68405 TT8e63 + 156065
2144 112777 -~ 1l474 1035417 + 86409 884400 + 204457 763695 + 269472
2145 1161428 + 181,72 1035426 + 255405 849485 + 331470 716608 + 364495
2146 1121666 + 369,413 97810 + 405451 T8lel2 + 432429 648428 <+ 434403
2147 1025650 + 519,10 882485 + 517495 695450 <+ 500408 573¢18 + 476459
2148 900621 + 618,437 771468 + 587482 60605 + 537e42 499452 + 496078
2149 T769¢69 + 669499 661617 + 620478 521466 + 550459 432400 + 500403
2240 648043 + 684,65 560641 + 626403 446037 + 546026 37248 + 491625
2241 S542661 + 673473 472487 + 612423 381e30 + 529496 32118 + 474422
2242 453437 + 646,435 398484 + 586405 326408 + 505072 277456 + 451463
2243 379452 + 608,88 337420 + 552408 279475 + 476432 240679 + 425431
2244 319406 + 565,44 286636 + 513433 261620 + 843453 210607 + 396440
2245 269694 + 518,57 264476 + 471464 209640 + 408447 184e64 + 365065
2246 230436 + 469,474 211405 + 428,12 183451 + 371679 163¢95 + 333e46
2247 198489 + 419,76 184617 + 383,436 16288 + 333486 147456 + 300404
2248 1T4e44 + 369,01 163632 + 337,64 147405 + 294483 135623 + 265448
2249 156623 + 317,461 147497 + 291,405 13578 + 254471 126485 + 229476
2340 143480 + 265,451 137483 + 243,54 12899 + 213445 122452 + 192,82
23,1 136692 + 212,455 132484 + 194,98 126e84 4+ 170496 122049 + 154459
23e2 135665 + 158,455 133,19 + 145,23 129467 + 127417 127425 4 115404
2343 1640033 + 103,31 139433 + 94415 138410 <+ 82403 13750 + The2s
2364 151660 + 46468 151499 + 41,71 153602 + 35467 154024 + 32443
2345 170644 ~ 11,436 172428 =~ 11,98 175465 = 11456 178679 =~ 981
2346 198028 -~ 70459 201468 = 660450 207458 =~ 58486 212676 =~ 81433
2307 23702 = 130434 242414 =~ 120,86 250475 = 104470 25795 = 90410
2348 289408 =~ 189,21 296402 = 173,18 307e24 = 146441 316606 = 122480
2349 35737 =~ 244451 365092 =~ 220417 37887 = 179465 38790 = lake35
2440 444488 -~ 291,63 454405 =~ 256439 466012 =~ 198401 G724 = 147495
24el 553473 = 323,409 560694 = 273,71 566e48 =~ 193406 563e51 =~ 125,96
24e2 683019 ~ 328,07 683616 = 261447 672419 =~ 156400 651e48 =~ T2469
2403 826032 - 293,21 810e34 =~ 208,58 76914 « 8le51 T21e40 + 1161
rLYYS 966065 ~ 206,81 923679 -~ 109,00 83932 + 27401 T59¢42 + 116485
26405 1078429 -~ 66494 1000421 + 31,31 867497 + 155411 759409 + 227¢12
2446 1134652 + 110,79 1021692 + 191473 851413 + 281478 T24¢26 + 325455
2407 1122614 + 295434 986077 + 384443 79707 + 388459 665491 <+ 401462
2408 104932 + 454455 908436 + 467417 720453 + 466408 59627 + 452448
2409 938486 + 569,58 806493 <+ 550468 635470 + 513,71 524486 + 480062
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25.0 814480 + 637,90 T00ell + 596,94 552,48 + 536,08 45743 4+ 490467
251 694e09 <+ 667401 599402 + 813,39 47617 + 539429 396¢T5 + 487439
2542 58549 + 667437 508¢96 + 608433 408499 + 528488 343¢65 + 474069
253 491698 + 648429 431eb4 + 588.67 351617 + 509015 29795 + 455048
2504 413043 + 616,76 366001 + 559448 302,09 + 483,416 259005 + 431479
2545 34836 + 577452 311e45 + 524621 260685 + 452,98 226021 + 404496
2546 294496 + 533,62 266035 + 485,08 226048 4+ 419493 198475 + 375487
2547 25150 + 486,90 22942 + L4346 19817 + 38485 176010 + 345405
258 216053 + A38,46 199458 + 400,15 17%¢24 + 348421 15782 + 312480
2549 188,90 + 388,87 175499 + 355,58 15723 4 310425 143465 + 279425
2640 167e¢77 + 338,438 158.08 + 309,93 163684 ¢ 271007 139¢bé  + 24b4ebb
2641 1526060 + 287,04 145048 + 263624 134¢95 4 230066 12723 + 208424
2602 143609 + 234,77 138,07 + 21%¢42 130665 + 188497 125623 + 170691
2603 199623 + 181,43 135,98 + 166498 131423 + 145,93 12785 + 132412
2604 141025 + 126,485 139453 + 116401 137,21 + 101,51 188,72 + 92,01
2605 149068 + 70,90 14943 + 64026 149039 + 55,80 149¢74 + 50078
2646 165639 + 13,58 166¢57 + 11e21 168085 + 9,410 171609 +  B8e92
267 189¢61 =~ 48,06 192430 = 42,78 19704 = 37493 201626 = 32460
2648 2264004 =~ 104,32 228438 = 96091 23572 <« 83499 261¢93 = 72408
2609 270088 <~ 163,12 276096 =~ 14958 286487 = 126483 29477 = 106064
2740 38274 = 219,20 340045 = 198,01 352¢31 = 162473 360685 = 13191
271 412047 =~ 268,466 421408 <« 237¢%9 432091 =~ 186410 439¢55 = 141480
27e2 812034 =~ 308,19 519487 = 26132 52717 = 189443 527401 ~»~ 129415
2703 632053 <~ 319444 634076 = 259470 629e28 = 164029 614071 = 874758
2704 T68e42 = 299,35 758404 = 222,15 T27e84 = 104031 689471 = 15,98
2745 907431 <~ 232,99 87439 = 141403 80599 = 984 738415 + 79492
276 102736 =~ 115,02 962469 = 17496 B848eT76 + 108676 751026 + 186611
277 1102672 + 45462 1003¢66 + 132404 84844 + 233014 T29:45 + 2086035
278 111%e61 + 224,02 989¢83 <+ 284423 809¢06 + 34486 681011 + 368e¢42
279 106655 + 389404 929010 + 414497 TH282 + 43059 617066 + 427411
2840 97278 + 517,71 838495 + 510692 663660 <+ 488611 549e14 + 463007
28,1 857¢24 + 602,05 T737¢26 + 570622 582630 + 519670 482028 4 480001
2862 738665 + 645,84 636¢90 + 898412 505,57 + 530465 420075 <+ 482439
28,3 628027 + 688,05 544097 + 602620 436060 + 526438 3660046 + 47417
2804 531403 + 647,88 464431 + 589,49 37637 + 511,38 318+38 + 458446
2845 bha8e03 + 622,82 395428 + 565,44 328467 + 488499 2TTekl <+ 43750
2846 378046 + 588,419 33709 + 533494 28079 + 461656 262081 + 412483
2847 320681 + 547,35 288454 + 497457 28390 <+ 430465 213406 + 385447
2848 273645 + 503,18 2468040 + 458601 213019 + 397¢24 188650 <+ 356407
28,49 234094 + 456444 215460 + 416027 188,01 + 361496 168038 + 325,01
2900 204009 + 408,13 189627 + 372.94 16784 <+ 325,13 1520329 + 292450
291 180402 + 358,64 168078 4+ 328430 152435 + 286493 140039 + 258463
2962 162010 + 308,12 19373 + 282446 14139 + 24Teél 132035 + 223439
2968 14997 + 256,58 143,93 + 235,43 1964499 <+ 206453 128443 <+ 186478
29¢4 16%51 + 203,93 139,41 + 187,13 13%.36 + 16426 128499 + 148675
298 162090 + 150,02 1406466 + 137,48 136697 + 120458 13457 <+ 109435
2946 148454 + 94076 14760 + 86042 146648 + T5e54 14597 + 68¢74
297 161417 + 38,08 161669 + 34,01 16290 + 29,38 164026 + 27430
2948 18189 =~ 19488 183,90 = 19445 187e52 = 17434 190480 <~ 14016
2965 212621 =~ 78470 215481 = 73,32 221e9% <~ 63454 22719 = 54018
30,0 254409 = 137,441 259438 = 1264626 268405 = 107e32 275405 = 90434
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TABLE I.—Continued.

a/n

M 0.003969 0.004763 0.006350 0.009525

140 18490 + 177442 1963 + 163485 21642 + 142492 26401 + 114,82
1le1 29091 + 138,62 30677 + 127491 32¢79 + 111446 37679 + 89490
1e2 4184 + 100451 42696 + 92440 455045 + 80411 51639 + 64¢79
1e3 55643 + 62420 56094 + 56453 60620 + 48421 67Tl + 39,07
leb T1e52 + 22492 73660 + 19,63 78400 + 15,21 87¢90 + 12456
1e5 91el7 = 17499 94407 = 18490 100013 = 19628 113653 = 14067
leb 115482 =~ 61412 119690 = 59454 128637 = 55449 146672 = 42,01
1e7 14T7e49 = 106495 153428 =~ 10245% 165022 = 93,420 190629 = 67477
1.8 189410 -~ 155458 19737 = 147469 214019 = 131,30 24Te62 = 88423
1e9 2644093 =~ 206431 256069 =~ 193,60 280408 <~ 166475 32157 =~ 96402
240 321410 -~ 256455 337651 <~ 236435 368459 = 192,459 411018 = 78462
2e1 425480 = 299,51 447640 = 266076 483¢93 = 194,78 504e¢76 = 20425
262 567e63 = 319490 591e74 = 265487 620096 - 149492 5T4e¢17 + 86423
Re3 74780 = 288415 762433 = 201487 750496 ~ 32491 586473 <+ 220471
264 93973 =~ 162476 916498 -~ 42,99 818¢38 + 152483 536028 <+ 340042
2¢5 1068692 + 74,11 980602 + 197419 782492 + 350,21 450014 4+ 415459
246 1054060 + 358,00 909491 + 433483 668e¢02 + 491,419 360620 + 446014
207 907¢28 + 576400 753450 + 585482 531405 + 556461 283017 + 446466
248 71419 + 680,83 585462 <+ 684447 40988 + 566484 222472 + 430498
249 54129 <+ 699450 444490 + 642452 31520 + 547423 176692 <+ 407492
340 407697 + 672464 338466 + 610487 244067 + 514448 142457 + 382,20
361 310659 + 626485 261605 + 567462 192481 <+ 477029 116680 + 3564007
362 2640037 + 575445 20466 <+ 521448 1564460 + 439,68 9741 + 330452
33 189652 + 524420 16345 + 476414 126628 + 403627 8283 + 305487
34 152437 + 475424 « 133410 + 432,91 105620 <+ 368455 71693 + 282,414
3e5 125605 + 429,11 110665 + 392405 89455 <+ 335,450 63697 + 259.21
346 104695 + 385,65 94612 + 353436 78409 + 303,90 58043 <+ 236487
347 90634 + 344446 82418 + 316445 70601 + 273442 55601 <+ 214491
348 80406 + 305,05 T3e¢94 + 280,490 64eT9 + 243472 53¢55 <+ 193,10
349 73639 + 266493 68487 + 246429 62613 <+ 214447 54001 # 171424
440 69690 + 229,61 664656 + 212,419 61490 + 185,35 56049 + 149,11
el 6937 + 192464 6721 + 178421 64017 + 156404 6121 + 126453
be2 Tle83 + 155,61 70661 + 143,97 69¢13 4+ 126425 68056 4+ 103435
4e3 TTe46 + 118,10 7713 + 109414 TTel? + 95473 79610 + 79450
LYY 86669 + 79475 8726 + T3,440 B88e92 + 64427 93e63 + 55403
4e5 100018 + 40,23 10175 + 36450 105626 + 31,480 113623 + 30427
LYY 118493 -~ 69 121469 =~ 1468 127ekts = 158 139632 + 5098
he? 14438 =~ 43404 148463 = 41,00 15716 = 35,32 173660 = 16024
4e8 178452 = 86449 184465 = 80,483 19664 =~ 68412 217675 =~ 33449
469 224404 = 129,95 232454 = 119,59 268453 = 97433 272467 =~ 40089
560 284041 ~ 170,97 295460 = 154403 3154332 ~ 118,01 336666 =~ 31448
Sel 363e55 - 204460 377607 = 177498 39790 =~ 122,01 40287 + 26032
52 464057 =~ 221,488 478407 = 181409 492414 = 97,91 457691 <+ 63096
53 586427 - 208449 59330 = 148476 584465 = 34,68 485094 + 146458
Se4 716688 <~ 146469 70515 = 67,01 652407 <+ 69405 478659 + 232477
55 828e24 <~ 25424 78315 + 64,488 671663 + 195,97 441618 + 304423
546 882¢84 + 143441 798690 + 222469 638021 + 315462 38758 <+ 351484
S5e¢7 85957 + 318476 T48e89 + 366460 568402 + 4030496 330081 <+ 37604l
58 T72453 + 457451 656062 + 467497 484016 + 484,472 278455 <+ 383453
509 656041 + 541,425 551676 + 522409 403633 + 4764443 233478 + 379416
660 540053 + 576421 453e87 + 539424 333615 + 473,09 196478 + 367483
6el 43938 + 577465 370677 + 532446 275627 + 459407 166671 + 352.55
6e2 356463 + 559,22 303437 + 511,491 228466 + 438,402 1424453 + 335,15
603 290486 + 530419 249e79 + 484,413 191e%9 + 413436 122495 + 316468
6ol 239418 + 496405 207e51 + 452492 16194 + 2557404 10732 + 297671
65 198469 + 459483 17420 + 420433 138450 + 360408 94089 + 278652
606 166099 + 423,08 148601 + 387442 119498 + 332,498 85¢14 + 259422
607 142425 + 386449 12751 + 354465 105050 + 305,493 TTe73 + 239480
6e8 123410 + 350434 111067 + 322416 94043 + 278495 T2e42 + 220420
609 108458 + 314461 9975 + 289,90 86e3%5 + 251,498 69¢11 <+ 200432




568 TAIl TSUN WU
TaBLE L.—Continued.
SN\a/A
kk 0.003969 0.004763 0.006350 0.009525
70 98e02 + 27917 91627 + 257474 81400 + 224478 67478 + 180405
Tel 91401 + 243,480 85496 + 225,46 78429 + 197.28 68455 + 159426
Te2 87e35 + 208,25 83671 4+ 192485 T8e27 + 169426 T1e65 + 137485
Te3 8702 + 172427 84,61 <+ 159,68 8lel6 + 140453 TTeb04 4+ 118,73
Teb 90420 + 135,457 88491 + 125,70 87¢32 + 110493 86647 + 92492
Te8 9730 + 97,492 9708 + 90474 9738 <+ 80439 99449 + 69457
Teb 108495 + 59,413 109¢84 <+ 54467 112410 <+ 48493 117649 + 46409
Te? 126409 + 19,12 128623 + 17453 132473 + 16483 161671 + 23038
Te8 150406 = 21494 153465 <« 20433 16077 = 15418 173452 + 3010
Te9 182465 =~ 63,47 187497 <= 58405 198408 =~ 45460 214.08 = 11491
8.0 226017 = 104,11 233449 = 93,82 266466 = T1468 263452 = 17432
8.1 283437 =~ 141,17 2924867 = 124425 308404 = 88,75 31985 = Teh8
8.2 356493 ~ 169,80 36742 =~ 143,59 381476 = 89480 375,78 + 22489
8e3 448015 - 182,05 457419 = 143,412 463401 = 66019 421457 + T5.15
8e4 554418 = 166461 555488 = 111499 540023 ~ 10699 445466 + 143417
845 663492 = 111435 648478 <~ 41,63 596016 + T4e82 44257 + 214619
8eb 755499 =~ 10458 713698 + 66422 615652 4+ 177495 415684 + 275417
87 804485 + 125,28 732459 + 193,490 59482 + 277437 374486 + 318492
B8 796015 + 268,83 701651 + 314,46 544405 + 355,79 32906 + 344,88
849 737402 + 390419 634475 + 406483 4T8eT4 + 406473 284478 + 356425
940 849e19 + 4T3,419 55232 + 464e34 41168 + &£32,70 265411 <+ 357612
91 554015 + 517483 469e78 + 491,32 350609 + 439487 211400 + 350497
9e2 465433 + 532,60 395438 + 496405 296076 + 8364435 182430 + 340437
93 388437 + 527418 33188 + 486421 25198 + 420482 158040 + 32700
Qeh 324423 + 509425 279419 + 467447 214495 + 402447 138463 + 311493
9:5 271677 + 484,02 236406 + 443,54 184456 + 381427 12234 + 295482
946 229424 + 454,76 200497 + 416470 159473 + 358,45 109402 + 279402
Se? 194492 + 423,36 1724%6 + 388429 13964%3 4+ 334467 98424 + 261073
98 167435 + 390,89 149466 + 359404 123626 + 310430 89¢71 <+ 244,02
9e9 145036 + 357,90 131040 + 329430 11036 + 285449 83425 + 225488
1040 128609 + 324461 11713 + 299,22 10046 + 260427 T8e75 4+ 207.28
1041 114692 + 291407 106438 + 268479 93423 4+ 234,458 T6e21 + 188414
1062 105645 + 257,19 98,91 + 237,92 88488 + 208:32 T5e73 + 168436
1043 9947 + 222485 94460 + 206446 87415 + 1281437 TTe54 <+ 167,88
1044 96096 + 187,85 93451 + 174427 88e35 + 153,59 Ble97 + 1264683
1045 98407 + 152,400 95489 + 141,416 92481 + 124489 89e¢53 + 104469
1046 10315 + 115,14 10217 + 107,02 101410 + 95420 100691 + 82,18
1047 11281 + 77.14 11301 + T1.78 113699 + 54461 117401 + 59452
10.8 127490 + 37,99 12935 + 35.:54 132558 + 133:43 138493 + 37458
10,49 149463 =~ 2409 152449 =~ le32 158413 + 2041 16787 + 17488
1140 179662 = A2445 184407 = 37,90 192638 = 27404 204e7T + 2099
11,1 219487 ~ Ble75 226006 = T2446 236497 =~ 52434 249467 =~ 3e32
11¢2 272470 =~ 117247 280453 = 101,89 293405 = §$9436 300e53 + 3079
1143 340422 =~ 145,21 348485 ~ 121,08 360402 = 72407 351495 ¢+ 2Be76
114 423423 ~ 188,12 430628 = 122463 4330866 =~ 53429 395415 <+ 72490
1148 5319400 = 146485 51982 = 974,69 508443 =~ Te35 420468 + 131462
11e6 §18e35 = 101463 604460 = 39,29 558438 + 65429 423425 + 194487
1147 70430 ~ 17469 568404 + 51,68 582065 + 154075 406062 + 2%1468
11.8 756040 + 97,87 694401 + 162437 5T72e83 + 244¢54 37173 + 295406
1149 T61le35 + 224,79 677669 + 271483 535,00 + 319489 332:45 <+ 323429
1240 721045 + 338,81 62770 + 361462 481428 + 372483 292070 + 338422
1261 651e73 + 423,90 559¢31 + 423434 422447 <+ 404409 255481 + 342,95
1242 569485 + 476442 486024 + 657,96 365,90 + 417456 223416 + 340447
1243 488477 + 501,03 417411 + 471,409 315,11 4 418,12 195:03 + 333412
1244 415434 + 505,09 355483 + 468.99 27119 + 409495 171612 4 322455
1245 351e96 + 495,30 30344)1 + 456481 233097 4 396410 150698 + 309486
12e6 298065 + 476070 259440 + 438,23 202476 <+ 378461 1364009 + 295476
1247 256061 + 452467 222482 + 418,68 176676 + 358401 120602 + 2804668
1248 21Te96 + 425,38 192461 + 390468 155622 + 337452 108642 + 264487
1249 188410 + 396,13 16779 + 364,15 137582 + 315,19 99¢01 + 2489446
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TABLE IL.—Conttnued.
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a/A

17 0.003969 0.004763 0.006350 0.009525

1360 163681 + 365,67 147459 + 336461 123015 + 292,09 91462 <+ 231446
13,1 144029 + 334439 131e39 + 308431 11178 + 268431 86016 + 213486
1342 128096 + 302447 118478 + 279434 103419 + 243,486 824861 <+ 195,65
1343 117e41 + 269492 109447 + 249,70 97627 + 218468 81¢07 + 176074
1344 109¢42 + 236468 10337 + 219431 9406 + 192070 8173 + 157408
1345 104496 + 202,64 100451 + 188,405 93672 + 165482 84090 + 136462
1346 104013 + 167465 10110 <+ 155,80 96658 + 137494 91405 + 115441
1347 107626 + 131,59 105e52 + 122446 103614 + 109405 100679 + 93458
13,8 114687 + 94436 114637 + 88401 114611 + 79023 114696 + 71452
1349 12776 + 55,99 128453 + 52454 130645 <+ 48,78 134456 + 49099
1440 147602 + 16470 149414 + 16444 153¢41 + 18436 160465 + 30034
1l4e1 174408 =~ 22,89 177470 = 19448 184448 = 10471 194015 + 164482
1be2 210076 = 61,457 215697 = 53463 225407 = 136018 235018 + 6076
1403 25907 = 97404 265475 - 83424 276e32 = 54039 282015 4+ 10642
144 320688 = 125446 328429 <~ 103,86 33781 =~ 40410 330665 + 29490
1445 396493 ~ 140,89 403606 = 109,08 406014 = 47,01 373626 + 66492
1446 485007 =~ 135,31 485481 =~ 91,19 47348 = 9484 401649 + 118040
14¢7 577¢95 - 100,16 56681 <~ 43,79 528406 + 52400 409472 + 176429
1448 661leTh = 30446 631642 + 33,63 558411 <+ 131439 398407 <+ 230482
1449 718490 + 69:64 665421 <+ 131,490 55798 + 214484 371670 <+ 274482
1540 T36el4 + 184480 661457 <+ 233,99 530092 + 288461 33744 <+ 305454
15.1 712601 + 294431 62515 + 322,91 486018 + 34beb2 30103 <+ 323477
1562 656082 + 381,98 567¢91 + 388,81 433,73 + 380653 266¢06 + 331489
1563 585648 + 441,47 502430 + 430,15 380694 <+ 399447 23433 + 332452
1544 510661 + 474454 43726 + 450449 331e95 <+ 405422 206044 + 32787
155 439096 + 486072 3TTe61 + 454,99 288450 + 401457 182036 + 319460
1546 377608 + 483,93 325424 + 44B 442 25094 + 391450 16178 + 308486
1547 322693 + 471,05 280636 + 434442 218491 + 377413 144430 + 296441
1548 27T7e12 + 451,58 24281 + 415,55 191484 + 359,489 129455 + 282474
1549 238076 + 427488 210458 + 393,450 169409 + 340670 11721 + 268416
1640 206e86 + 401,446 184005 <+ 369435 150412 <+ 320013 10702 + 252,81
1641 180652 + 373426 162412 + 343,73 13447 + 298451 98481 <+ 236478
1642 158499 + 343,79 144422 + 317,02 12180 + 276400 92450 <+ 220409
1603 18171 + 313,35 12993 + 289440 111.90 + 252,466 88405 <+ 202470
16e4 128627 + 282,05 118497 + 260,491 104¢6% + 228448 85455 <+ 184457
1645 118045 + 249,88 111423 + 231,52 100608 + 203442 85016 <+ 165465
1666 112416 + 216478 106671 + 201,417 98¢32 + 177438 87416 + 145,691
167 109449 + 182,65 105459 + 169477 9966 + 150431 91496 <+ 125436
1648 110072 + 147439 108421 + 137,23 104454 + 122,18 100614 <+ 104015
1649 116631 + 110,92 115610 + 103,54 113.61 + 93007 11244 + 82458
1740 126497 + 73429 127405 + 68479 12776 + 63.24 129479 + 61432
1761 143069 + 34469 145011 + 33,31 148409 + 33428 153418 + 41453
1742 16T7¢78 =~ 4e33 170662 - 2416 17596 + 4e32 183451 + 25418
173 200085 =~ 42,69 205419 =~ 36423 212477 = 21465 221406 4+ 15417
174 244075 ~ 78439 2506449 <= 66449 259e58 = 41445 264072 + 15,32
1745 301622 = 108,07 30774 = 89406 31627 =~ 50648 310698 + 29456
1746 371408 =~ 126458 37675 = 98,33 380627 =~ 43,607 353455 + 60409
177 452488 =~ 126489 654431 =~ B8Te42 445426 = 14405 384467 <+ 10521
178 540486 = 101,21 532454 = 50,09 501611 + 38623 398630 + 158456
1749 623667 <~ 44,13 598499 + 15450 536082 + 108497 393610 + 211435
1840 685093 + 42,469 640415 + 103416 54556 + 187el4 37264 4+ 256421
18,1 T14e21 + 147,83 647488 + 199,04 528411 + 259,99 342486 + 289445
1842 704407 + 253,47 623459 + 287435 491451 + 318441 30934 <+ 310085
1843 661092 + 343,444 576¢39 <+ 357410 444,77 + 359607 275498 + 322418
1844 6006e22 + 409416 81757 + 404,458 395432 + 383.10 244094 + 325466
1845 531611 + 449495 456427 + 431456 34787 + 393,64 21715 4 323449
1846 463009 + 469,63 398611 + 442417 304077 + 394016 192481 <+ 317430
187 400e73 + 473,36 34577 + 440,80 266082 + 387456 17175 + 308430
1848 345481 + 465482 300005 + 431,05 233099 + 376404 153e69 + 29T7e33
1849 298056 + 450,62 260481 + 415,59 205489 + 36lelé 138428 <+ 284492
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1940 258042 + 430,29 22747 + 396429 182401 + 343087 125424 + 271642
1961 224063 + 406454 199¢36 + 374434 161486 + 324091 114633 + 257404
19.2 19638 + 380,47 175483 + 350,53 145,02 + 304465 105438 + 241489
1943 172098 + 352,74 15634 + 325,33 131.15 + 283432 98428 + 225499
19.4 153488 + 323473 1406049 + 298497 120404 + 2610402 93401 + 209636
1945 138467 + 293463 127699 + 271459 111.56 + 237.80 89462 + 191498
1946 127011 + 262,451 11871 + 243,19 105472 + 213460 88425 + 173672
1947 119408 + 230,35 1126462 + 213,74 102462 + 188438 89415 + 154465
19.8 114065 + 197,08 109487 + 183417 102451 + 162410 92469 + 134474
1949 11403 + 162462 110674 + 151443 105478 + 134471 99639 + 114410
2040 11764 + 126493 115472 + 118,48 113,02 + 106428 10992 + 92499
2001 126411 + 90,01 125451 + B&e42 125,03 + 7704 125613 + 71495
2042 140633 + 52406 14106 + 49,52 142483 + 47448 145497 + 52400
2043 16148 + 13,53 163460 + 14,442 167465 + 18456 173433 + 34480
2044 191404 = 24463 194460 = 19469 200484 =~ Te99 207466 + 22491
2045 230671 =~ 60471 235462 = 50,73 243447 = 29442 248426 + 19076
2046 282415 - 91.80 28794 -~ 75.31 295475 = 41469 292446 + 29010
2047 346034 ~ 113442 351471 ~ 88,54 355085 =~ 39463 334498 + 52460
2048 4224446 ~ 119,36 424062 =~ B4,418 418474 = 18416 368e74 + 92073
2049 506011 =~ 102,43 500e43 ~ 56412 47576 + 25029 387¢40 + 141071
2140 588¢05 ~ 56483 568451 =~ 1437 516¢60 + 87495 388432 + 192475
2101 654076 + 17483 616023 + 76443 533+52 + 161001 373455 <+ 238037
2142 692488 + 113,49 634034 + 166424 5253412 + 23247% 348012 + 274000
2143 695¢58 + 215,01 621440 + 253457 496034 + 293447 31Te42 + 298449
2leb 665079 + 306,55 583487 + 326460 455.17 + 338,38 285060 + 312489
2108 613e52 + 377,80 53177 + 37973 409003 + 367026 255019 + 319420
2146 550027 + 425,77 6The28 + 413,00 363413 + 382,43 227445 + 319441
21e7 485006 + 452,61 41770 + 429450 320439 <+ 386497 202481 + 315622
218 423040 + 462,66 365448 + 433,16 282407 + 383,72 18127 + 307.88
2149 36788 + 460,35 31903 + 427455 248446 + 374,99 162461 + 298429
2240 319031 + 449432 2786458 + 415,42 219438 + 362028 146056 + 287405
2241 27Te51 + 432,31 24381 + 398,78 194641 + 346486 152085 + 274457
2242 261092 + 411419 214418 + 378,98 173¢14 + 32943 12128 <+ 2614008
2203 211485 + 387,21 189413 + 356,93 155,16 + 310447 111659 ¢ 246074
224 186067 + 361418 168413 + 333,18 140016 + 290427 10376 + 231459
2245 165083 + 333,58 150480 + 308,407 127491 + 268498 9771 + 215467
2246 148493 + 304468 136¢84 + 281477 118427 <+ 206466 93450 + 198496
2247 135670 + 274461 126409 + 254435 11123 + 223431 91022 + 181,37
2248 126600 + 243,439 118450 <+ 225479 106486 + 198490 9109 + 162494
2249 119687 + 210498 11418 + 196406 105437 + 173438 93448 + 1424684
2340 117647 + 177434 11338 + 165,11 107411 + 146472 98eT75 + 123455
2361 119616 + 142,442 116652 + 132,91 11260 + 118,97 107462 + 102489
2302 125050 + 106423 126422 + 99453 122457 + 90431 120.82 + 82,09
2343 137629 + 68,91 137435 + 65,21 13794 + 6lel4 139.26 + 62401
2344 155460 + 30486 15703 + 30446 15987 + 32429 163483 + 44007
23¢5 181e78 ~ 7013 184460 - 3069 189461 + 5420 195010 + 30448
2346 217041 ~ 43,58 22157 = 35,46 228e31 = 17474 23278 + 24433
2347 264009 ~= 76,401 26924 = 61494 276040 = 32497 274.88 + 29418
2348 322096 ~ 100,53 328407 = 78482 3324785 ~ 35483 31708 <+ 48401
2309 393472 = 111465 396055 ~ 80447 393445 ~ 21433 353403 + 081033
2440 473620 = 102,70 469¢84 =~ 60,91 451019 + 13,82 376426 <+ 125486
24,1 553495 = 67467 538499 =~ 16428 496eb4 <+ 68962 383401 + 174084
24e2 624919 = bod7 592¢34 + 5149% 520088 + 136433 373488 <+ 220489
2443 670691 + 81,72 619485 + 135,37 521010 + 206045 352487 + 288470
2beb 685446 + 178,44 61771 + 220,98 500010 + 268495 32510 + 286416
2405 667¢65 + 270,59 589478 + 296455 466064 + 317476 294489 + 303464
2446 624498 + 346454 544462 + 354,82 422000 + 351431 265015 4 312473
2607 56797 + 401,19 491e24 + 394410 37781 4+ 371602 23Teb8 + 315433
24e8 505098 + 434,498 436052 + 616438 335653 + 379455 212488 + 31311
2409 445032 + 451,29 384062 + 425,08 296092 + 379468 190452 + 307439
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2540 389042 + 454,421 33756 + 423457 262659 + 373460 171427 + 299015
25e1 339068 + 447,40 296600 <+ 414,78 232656 + 363416 154458 + 289405
2562 296032 + 433473 259488 + 400,81 206055 + 349455 140621 + 27745%4
2503 259002 + 415,26 228480 + 383,16 184619 + 333462 127695 + 264491
2504 22720 + 393,440 202e27 4+ 362486 165612 + 315,94 117e61 + 251434
2545 200429 + 369409 17982 + 340,57 149403 + 296484 109.08 + 236491
2546 177677 + 342,491 161406 + 316470 135668 + 276453 102631 <+ 221465
2547 15923 + 315,22 145669 + 291,48 124494 + 255,610 97631 + 205457
2548 144039 + 286,20 133452 + 265402 116476 + 232459 94418 + 188464
2549 133408 + 253,93 124450 + 237436 111618 + 208496 93410 + 170083
2640 125631 + 224440 118668 + 208447 108438 + 184420 94635 + 152012
2641 121419 + 191,58 11627 + 178431 108666 + 158427 98435 + 132,58
2602 121602 + 157444 117664 + 146486 112449 + 1314620 105665 + 112437
2643 125631 + 121,98 123634 + 114,18 12052 + 103612 116698 <+ 91,85
2604 134676 + 85431 134615 + 80444 133459 + 74438 133617 + 71671
2645 150034 + 47475 151409 + 46,408 152eT7T + 45064 155410 + 53,617
2646 173429 + 997 175641 + 11494 179426 + 18413 18347 + 138412
2607 205408 - 26478 208454 = 20444 214622 = 601l 218427 + 29431
2608 24Te26 =~ 60439 25179 = 48459 258431 =~ 23497 258016 + 30410
2649 301407 =~ 87450 30589 =~ 68473 310694 =~ 31425 299468 + 43,463
2740 366069 -~ 103,25 370602 = 75478 369¢21 = 23413 33725 + T1la31
271 441495 =~ 101451 440652 = 64,400 427408 + 4e21 36448 + 111414
2742 520698 = 76420 510600 = 28488 475689 + 51422 376e74 + 157061
2763 593e69 = 23,94 567490 + 29,92 -507¢01 + 113418 373024 + 203462
2Teb 64773 + 52463 603481 + 106445 515e54 + 180697 356084 + 243429
2745 673415 + 143,69 611496 + 189443 502436 + 244457 332621 + 273458
2746 667403 + 235,30 593¢68 + 266463 472491 + 296483 303680 <+ 294010
27e7 634023 + 315,00 55585 + 329442 434011 + 334484 274485 + 306400
278 584001 + 375,78 507¢06 + 374444 391490 + 359,05 24731 + 311,01
279 52578 + 416431 454458 + 402442 350029 + 371462 222012 + 310680
2840 $66055 + 438,88 4036428 + 516416 31151 + 375,10 199e62 <+ 306073
2801 410056 + 447,412 355480 <+ 418489 276653 + 371483 179679 <+ 299483
2842 ‘359484 + 444464 313e24 + 413450 245459 + 383463 16247 + 290486
2843 315604 + 434341 275684 + 402426 218e86 + 351,85 147¢46 + 280631
28e¢4 276010 + 418,466 243e¢36 + 386481 195¢15 + 337e44 134e54 <+ 268451
2845 262058 + 398,98 215640 + 368429 175601 + 321402 12355 <+ 255469
2806 213099 + 376442 191654 <+ 347647 15787 + 303402 114635 + 241494
2807 189483 + 351,70 171639 + 324,85 143647 + 283468 106489 + 227434
2848 169¢70 + 32%424 1564065 + 300472 131667 + 2863014 10115 + 211489
2849 153629 + 297429 141612 + 275424 12239 + 241445 9721 <+ 195457
2940 140042 + 267,98 130671 + 248447 115465 + 218461 95022 + 178435
2901 131605 + 237,34 123444 <+ 220,441 11161 + 194460 95444 <+ 160423
2962 125627 + 205436 119649 + 191406 110451 + 169439 98622 + 141423
293 123e32 + 172401 119617 + 160437 112677 + 143400 104¢07 + 121449
2% ¢4 125063 + 137:29 122496 + 128440 11896 + 115453 11365 + 101428
29¢5 132684 + 101429 131e56 + 95427 12986 + 8Te24 127¢74 + 81,17
2946 14582 + 64426 145690 + 61433 146045 <+ 5869 147620 + 62617
2907 165069 + 26475 167¢14 <+ 27430 169¢87 + 130489 172679 + 45492
2948 193¢84 -~ 10419 196662 = 5455 201.28 + 5059 204eTT + 34482
2969 231475 ~ 44,78 235468 =~ 35,10 261650 = 14454 242030 + 31497
30,0 280475 =~ 74,11 285423 =~ 58,407 290042 = 25,70 28278 + 40061
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dissipative media by simply letting % be complex. This guidance and numerous discussions throughout many

is also an advantage over many existing theories. years. For several very helpful discussions I am deeply
grateful to Professor T. D. Lee. I also wish to thank
ACKNOWLEDGMENTS Mrs. Joan G. Beaton for carrying out the calculation

I am greatly indebted to Professor Ronold W. P. King for Fig. 8 and Table I, and to Mrs. Betty Koerner for

for introducing me to this subject and for his patient the calculation of Fig. 7.

APPENDIX A

This appendix is devoted to the detailed derivation of (4.13-4.15). It follows from (4.1) that S(Z) has the

integral representation

S(Z)=—3% f {[d£[2(Q—In2)—In&(E+1) T —[2(R—In2)+2mi—Ing(¢+1) 171}
' X{ (18" exp[2ikZ(14+8)]— £ exp(2ikZ8)+[E(1+8 T}

Let & be a large number, then

f ) dE{[2(Q—1n2) —In£(¢+1) 17— [2(Q—In2)+2mi— InE(¢+ 1) T[4 (6+1)]

=In{1+#i[Q—In2—InE]1},
and

2 f ) dE{[2(Qo—1n2)—2 In(¢+1) TH—[2(Qo—In2)+ 27— 2 In(t+1) T4} (¢+ 1)

=In{14mi[Q—In2—InE]1} —In{14mi[Qo—1n2]}.
On the other hand, approximately

[ dE([2(Q0—1n2) ~ Ing(e+ 1) P — [2(@0—In2) ~2 In (¢ 1)) (g-+1)
~— f dE[2(Q0—102)—2 In(g-+1) ] In[ (& 1)/£] (54 1)

~= f ) d&[2(Q—In2)—2 212 In[ (£4+1)/E](¢+1) 7' = — [ 2(R—2 In2) ]2

Similarly,

f AE{[2(Qo—In2)+2mi— InE(+1) 1 —[2(Qo—In2)+ 27— 2 In(1+ &) T} (£ 1)L

~ =122 2(Q—2 In2)+2mi ]2
The combination of (A2-AS) yields

[ a(02@0—1m2) ot - (20— 2)+2ri— Ing (&) L1487
’ = In{1+mi[Q0—In21} +3n2{[2(R0— 2 In2) ]°— [2(R0— 2 In2)+2mi ]2}.

It remains to study the other two terms of (Al). It follows from (4.16-4.18) that

f dE{[2(Qo—1n2)—Ing(£+1) T —[2(Qo—In2)+ 2wi—Ing (64+1) T} £ exp(2ikZE)

~ f det e {[Qu(Z) — (ng-+v) 17— [9:(2) — (ng+v) )

(A1)

(A2)

(A3)

(A4)

(AS)

(A6)

=f dge In{[Q:(2) — (In+7) 17[%(2) — (Ing+v) B~ In{[22(2) T70(2) } +3v'{[2:(2) I — [2(2) 7). (A7)
0
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Also,
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f dE{[2(Q—In2) —In&(+1) I — [2(Q0— In2)+2mi—Ing(£+1) 17} (14 £)~* exp[2ikZ (1+£) ]

The substitution of (A6-A8) into (A1) yields (4.13).
Next, it follows from (4.1-4.2) that

T(2)—iS(Z)=i | M) (¢+k) exp[—i(§+R)Z],

or

~i(2kZ) exp(2kZ){[9:(Z) ' —[2(2) T} (A8)

(A9)

T(2)—iS(Z)=—i f - it exp(2ikZE){[2(Q0—1n2)—Ing(1+£) 17— [2(Qo—In2)+ 2ri—Ing(1+£ 17},  (A10)

Equation (4.14) follows from (A7) and (A10).
Finally, it follows from (4.10) that

U(Z)=—i f ) AE{[2(Q—In2)—InE(1+ ) 11— [2(Qo—1n2)+2mi— Ing(14-£) 17}

X{(1+& " exp[i2kZ(1+£) ]+ exp(i2kZE)}. (All)

Equation (4.15) then follows from (A7), (A8), and (Al1).

APPENDIX B
In this appendix (7.21-7.23) are to be derived. For
this purpose, it is convenient to define, with (7.12),

A= —Inl'—2ikh,=I0[Li(k)/Lya(—k)]. (B1)
Since

A= — (mi)1h f dr (=) K/ ).  (BS)

But the integrand here is bounded in the neighborhoods
of {=2=k. Thus, the contour Cy may be replaced by the
real axis:

K,(k)=K.(—k)=2In(b/a), (B2) w .
it is also convenient to introduce A=x"2ik j; & (= k) InKS ). (B6)
T K/ (§)=K.()/[2n(b/a)]. (B3) Since the integrand is real for {>%, only the part
e, _ _ 0< ¢ <k contributes to I'. Write
L) =~ 0K/ ©) 13 W2 nG/a)]. (B4 At -
It follows from (B1) and (B4) that where
2ik [k (T [a(B— ) T, a(k2— )V ]— Ho®[b(R—¢2)}
LY R oLa(E= ) TH O CDE-rD =)
q T v 21In(d/a)
an
2ik e Ifa(— )Y IK [a(i2— ) ]— Ko[b(2— #)}]
A f (22— In oLo@—FYIKL K . (B9)
T Yy

First A; is to be calculated to the accuracy (kb)2
The change of variable

E=b(s2— k)t (B10)
gives
Ae=7"12ikb(S1+.S2), (B11)
where
S1=f dge?
0

XIn{[Ind/a [ Io(at/b)Ko(at/b)—Ko(£)1}
depends only on the ratio /e, and

(B12)

In(b/a)

si= [ a Lo
0

XIn{[Inb/aJ[Io(at/b)Ko(at/b)—Ko(£)]}. (B13)

Sy may be determined approximately by expanding
the logarithmic factor in powers of & If &'=¢g(kb),
then

Sa=kb[4In(b/a) ] f ag’ EL(E* 1)~ =]

X[y—1+In(kbE/2)]. (B14)

This gives, finally,

Se=kb[4In(3/a) F[2—y—In(kb)].  (B15)
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In order to get any new results on the radiation
resistance of the two-wire line, it is necessary to
calculate T' to the accuracy (kb)%. Therefore, the real
part of A; should be calculated to the accuracy (kb)%,
the imaginary part only to (kb)2. For this purpose,
write A; in terms of the new variable of integration

E=(BP—sHh
Ay=— 12k
k
% f dgt— (2 — £} Infmil2 In(b/a) ]
0

X[Jo(at)Ho® (ag)— Ho® () 1}

Now, the logarithm may be expanded, keeping terms
up to &%, but neglecting a®. This gives the result

—2ik
= f (-

™
-1 b¢ wi
A Tl
b2£2 b4$4 6454
(D)
128

-2 7l'1« 2 b4£4
——(ln—) ('y— 141 n————— —_— } (B17)
16

(B16)

The rest of the calculation is tedious but straight-
forward. Because of the difference of accuracy required
in the real and imaginary parts, it is advantageous to
write them separately. The real part gives (7.21) and
the imaginary part turns out to be simply

ImA1= —1I‘—12ka2. (BlS)
Equation (B11) and (B18) may be combined to yield
TmA=2kbS,/, (B19)

which is the same as (7.22).
In order to get (7.23), write the S.(Z) of}(7.17) in
the form

S (Z) Sal(Z)+Sa2(Z), (BZO)
where
Sa(Z)=} f F{[R.() T —[Ra(B) 1)
' XL(E—0 '+ ()], (B21)

TSUN WU

and

Sa(Z)=—1} f & (RO T~ [Ru(B) T

X{ (k=) exp[i(k—§)Z]

+ (k40 exp[—i(k+$)Z2T}. (B22)
To the order (kZ)7, S.(Z) is real. Therefore,
approximately, '

IXI)SA(Z)=ImSa1(Z)- (B23)

Similar to the case of InI', the imaginary part of S,;(Z)
comes only from the range 0<{<%. By series expan-
sion, it follows from (B21) and (B23) that

B\ prdt
ImS.(Z2)=—Fk{ In- I —(B2—g)1
@) (“a) mfo =)

b7} bt w
X{ (ln—) [ ('y—-l-l—ln———«
2 2

bg b4.§4 b4£4]
4 128

— bt wi\2bigt
(ln—) ('y—l+ln~———2—- ] (B24)

This integrand differs from that of (B17) only in the
absence of 3. Thus, (7.23) follows.

APPENDIX C

In order to derive (7.31) by the method used by
Storer and King, the current distribution is assumed
to be

I(z)=sink(h—|3]). (1)

The tangential component of the vector potential at
large distance is immediately verified to be

Atan(0,0) = const[ cos(kk cosf) —coskh | cos¢, (C2)

where the constant is independent of %, %, 6, and ¢.
Integration over 6 and ¢ leads to

=const[ 142 cos?kh—3 sin2kk/(2kk)]. (C3)

The constant here may be determined by the observa-
tion that, at resonance [i.e., k2= (n-+%)r], the present
case is identical to that treated by Storer and King.
Except for %, this gives (7.31).
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A superconducting material may be isothermally transformed to a normal conductor.by raising the
magnetic field to a value greater than a certain critical field. When this is done, the transition takes place
along an interface, determined by the critical field value and by a magnetic-flux condition. In the present
paper, the effect on the transition rate of magnetic-field penetration into the superconductor is studied. This
involves the solution of a free-boundary problem in which the free boundary divides two regions, each
governed by a different parabolic differential equation. The problem is solved by using the asymptotic tech-
niques of singular perturbation theory. A boundary layer is shown to exist along the moving interface on the
superconducting side. The presence of the boundary layer slows the motion of the free boundary. Also
included in the solution is a study of the effect of the magnitude of the initial field on the starting motion
of the free boundary. Finally, some numerical results are presented.

1. INTRODUCTION

ECENT technical interest in the kinetics of
transition in superconductors has produced a
series of studies on certain aspects of this problem.
These studies have dealt with the propagation of a
magnetic field into a superconductor and the resultant
change to a normal conductor either as an isothermal
process'? or, acknowledging the thermodynamics more
precisely, by taking into account latent heat and eddy
currents.>=® In all of these studies in which time
dependent solutions are obtained, it has been assumed
that penetration of the magnetic field into the super-
conducting region is small enough so that it has negli-
gible effect on the rate of transition. The present work
considers the nature of this assumption and shows the
effect of both penetration and initial external field on
propagation rate. This means that the London equa-
tion® for the magnetic field #

47 47o® 1
V2H=_—H+ H1+*2H1"r (1)

Ac? c? ¢

(Gaussian units are used. ¢ is the velocity of light, 7 is
the real time variable, ¢* is the normal conductivity
in the superconductor, A is the London characteristic
constant and subscripts denote partial differentiation)
is applied to the superconducting region instead of
assuming that the magnetic field is identically zero
in that region. The transition is assumed to be iso-
thermal, although our methods may certainly be
extended to take into account eddy currents and latent
heat. The London equation (1) which includes the
penetration effect in a linear form is known to give
only a limiting representation of the penetration effect.
Several nonlocal penetration terms have been discussed

L A. B. Pippard, Phil. Mag. 41, 243 (1950); E. M. Lifshitz, J.
Exptl. Theoret. Phys. (U.S.S.R.) 9, 843 (1950).

2 J. B. Keller, Phys. Rev. 111, 6, 1497 (1958).

3W. B. Ittner, Phys. Rev. 111, 148s (1958).
(149 ?9.) W. Duijvestijn, IBM J. Research and Develop. 3, 2, 132

5T, E. Faber, Proc. Roy. Soc. (London) A219, 75 (1953).

8 F. London, Superfluids (John Wiley & Sons, Inc., New York,
1930), Vol. 1, p. 27 et seg.

and studied for the static case.”® We believe that the
techniques and results found here may be useful in
transition problems with nonlocal penetration effects.

From the mathematical point of view, this paper
presents a study of a free-boundary problem in which
the free boundary separates two regions each governed
by a different parabolic partial-differential equation.
A novel feature is the form which the conditions on the
free boundary take. In typical transition problems,?®
the local condition at the free boundary relates the
flux across the interface to some functional of the
interface motion. In the present case, the flux is not
related in a local manner to the interface. It will be
seen that, at each instant, the entire distribution of
magnetic field in the superconducting region affects the
flux across the interface. We shall obtain approximate
solutions to the boundary-value problem that describe
this situation. The approximation methods used include
boundary-layer techniques and series expansions. These
approximations, their relation to each other and to
certain limiting cases, will be discussed in the sections
that follow. We will neglect displacement-current
effects. The discussion is limited to one-dimensional
transitions. In particular, the case considered is that of a
half-space of superconducting material being switched
to a normal conductor in the presence of an external
field H, greater than the critical field H. and perpen-
dicular to the direction of the moving boundary. Then
H is a function of x only (see Fig. 1).

Particular attention must be given to the boundary
conditions that hold on the free boundary. As has been
indicated above, the field attains a value H. everywhere
along this moving boundary. Since the boundary’s
position is not specified, another condition must be
given to determine it. This second condition is obtained
in the following manner®:

7J. R. Schrieffer, Phys. Rev. 106, 1, 47 (1957).

8 A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).

1;6V(‘)]) L. Miranker and J. B. Keller, J. Math. and Anal. 9, 67
( 10 W'e would like to express our indebtedness to Dr. J. Swihart,
IBM Research, Poughkeepsie, for his help in deriving this condi-

tion and to the referee of this paper for his comments on the
derivation.
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1‘
y
o Normal Superconductor
x =§(7)
—>
H, -
[ x
°
H=H,
éee boundary
FiG. 1.

Because the magnetic field is perpendicular to the
x— 4 plane, there is a current component and an electric~
field component, only in the y direction. The electric
field is continuous at the boundary

E| ot =E*| o=try (2)

(— and + represent normal and superconducting

regions, respectively, and x= £(7) is the free boundary).

The current on the normal side is related to the electric

field by Ohm’s law. The total current in the super-

conducting region is the sum of normal and super-
conducting components

Jr=j*t+j* 3

The superconducting component is related to the

magnetic field by one of London’s phenomenological
equations

A curljit=—H*/c. 4)
If this is integrated, we obtain, for our particular
geometry,

i = | " (), s)

2= £(r)

i.T is given by Ohm’s law:

Jat=0'E*, (6)
where ¢° is the normal conductivity in the super-
conducting region. Now using (2), (3), the Maxwell
relation

OH /ox=— (c/4m) ] (7
applied to 7~ and j*, and also (6) applied to j—, we
obtain the equation

08
(Hz-*_— _—H;_)
o¥

_ f " Hrr)ds. (®)

A Jyny

z=£(7)

H. COHEN AND W. L. MIRANKER

(Here oV is the conductivity in the normal region.)
This is the novel free-boundary condition referred to
earlier. It relates the loss in magnetic flux across the
boundary to the boundary motion and to the amount of
magnetic field that penetrates into the superconducting
region.

Other conditions that need be satisfied are:

H(O,7)=H,.,, >0, (9)
H(x’0)=H0(x)’ xZ 0, (10)
H(x,7)—0, (x—£(1)) — . (11)

Condition (9) is the initially imposed field which
switches the superconducting material to the normal
conducting state. Equation (10) refers to the solution
of the static penetration problem. In the present
problem, it will be assumed that for time 7<0 the
applied field has constant magnitude H, and is applied
in the z direction. Then, Ho(x)=H, exp[— (47/Ac?)¥x]
is the desired solution of (1) when H is independent of 7.
Condition (11) is the statement that, far in front of the
moving boundary, no field has penetrated.

Equations (1) [for x>#(r)], (8)-(11), and the
magnetic-field equation in the normal region

H,; = (4wo¥/)H,~, x<&(7), (12)
together with the condition
H(&(r),7)=H., (13)

define the free-boundary problem to be solved. In Sec.
2, the case of A— 0 (no penetration) is set out for
ease of reference. This case is thoroughly discussed in
references 1 and 2. It is mathematically related to the
Stefan problem known in heating and melting problems.
In Sec. 3, the approximate solution for large times is
obtained. This is useful nearly everywhere except for
the region where 7 is very small, and x is near to £(7).
In Sec. 4, an approximation is obtained for this last-
mentioned exceptional region. Section 5 summarizes
the results and offers some comment on the method.

Before going on, however, it is convenient to rewrite
the equations with some changes of variables and
symbols. Let 7=7T"{ where T= (x¢*/c*)4mo?, and let
2=x/x,. Here, xo is any convenient distance scale; it
may be, for instance, the width in the x direction of the
superconducting material. 7" has the dimension of time,
so that ¢ and z are now dimensionless variables. If we
further define

x0241r/ (AC“’) =«

[(Ac?/4x)} is the London penetration distance], then
the two differential equations become

H,~=H{, z<t(1), t>0,
sz+=aH++BHta Z>§_(t)7

(14)

1>0; (15)
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B is the ratio ¢5/¢¥, £(¢) is the free boundary in the
dimensionless coordinate system. The boundary condi-
tions are now

H-(¢(),n)=H*(®),)=H., (16)
H-(0,)=H, >0, 17
H+(z,0)=Hoexp(—alz) 220, (18)

H+(Z,t) - O’ (Z'—f(t)) > x, (19)
(Hz+—'BHz_)z4(t) = —afw H+(z,t)dz. (20)

(@

The ratio of conductivities 8 which enters Eq. (15) and
condition (20) is a function of temperature. For this
isothermal analysis it will be constant, but it has the
range 0<B<1. =1 corresponds to a temperature 8, at
which the normal conductor becomes superconducting
in the presence of a magnetic field of zero strength.
B8=0 corresponds to the temperature §=0, and expresses
the fact that all of the electrons in the superconducting
regions are in the superconducting state. The number
a is also temperature dependent. The dependence is
often given as

a=apo(1—(6/6.)*)},

where as¢ is the value at zero temperature. For large
superconducting regions, so-called bulk specimens, say
where xo would be of the order of one centimeter and
for all values of the temperature except those close to
6., a is a large number of the order of 10°, This is the
situation in which the London equation (1) holds and
to which our analysis applies.

2. THE SPECIAL CASE OF NO PENETRATION,

o — 0

When a — «, denote the resulting {(f) by {.(f). In
this case, we see that Eqgs. (15) and (18) formally go
into

H=0 z>§-oa(t)7

H(z,0)=0 2>0.

1)
(22)

(see Fig. 2). In the language of singular-perturbation
theory, Eq. (21) is the formal reduced equation. The
problem is now similar to the Stefan problem (a
problem of heating or melting)? except for the fact that
the magnetic field H is discontinuous along z={,(?).
There is clearly a jump of magnitude H. across the
curve. In the Stefan problem, a temperature is attained
along the free boundary and maintained at this constant
value for 2> {,(¢). In this latter situation, no heat flows
into the region z> ¢, since all the heat coming to the
boundary from the left is used for melting. In the
present problem, the physical meaning of @ — « (A=0)
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a

t z = ;ec(t)

FigG. 2.

is that the magnetic field is completely blocked from
entering the region 2> ¢, (¢). Thus, all the flux delivered
to {. is used at the boundary to change the super-
conducting material to normal.

It is important to remark that Eq. (20) does not give,
for @ —» oo, a useful condition. It is possible to derive
independently a condition on the transfer of the energy
of the magnetic field at the boundary into motion of the
boundary when there is no field penetration. In the
normal conductor, according to the law of induction,
the change of the magnetic flux at the boundary
generates a local current

dx
H—
dr

¢ ..
=——-—-]_

oN

(23)

z=£(7) o=£(1)

This is related by one of the Maxwell equations to H-,

c c
= A=), (24)
In the dimensionless coordinates, we then obtain
H-=—Hg: 3=£(0). (25)

This condition is then the one which appears in the
classical Stefan problem.

It is not at all apparent at this point how condition
(25) derives from condition (20), but this will be shown
in the next section. Using the variable s=zt7%, it is easy
to show that Eq. (10), together with conditions (16),
(17), and (25), has the solution

8/2
H-()=H.— By exp(ki/4) [ exp(—)ip, (20

with ¢, (t) =k}, where the constant ko is given by

Hc_ Hc ko/2

= ko exp(ke?/4) f exp(—dp.  (27)

[

This is the solution of references 1, 2, etc.
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3. ASYMPTOTIC BEHAVIOR FOR at LARGE

For « large but finite, it may be expected that the
solution in the superconducting region will again be
zero far from the free boundary and from the origin in
the z, ¢ plane (for z>>¢(f) and {>0). But in this case;
since H is not identically zero, it must satisfy the
conditions on the free boundary and on =0 (see
Fig. 3).

From the behavior of the static solution Eq. (18), we
expect a sharp exponential drop from H, to nearly zero
in the.neighborhood of z={(¢). This behavior suggests
a boundary layer or singular-perturbation treatment.
We will first consider the part of the problem in the
superconducting region. We will temporarily drop the
free-boundary condition (20) and obtain an expression
for H* which satisfies only the two remaining
boundary conditions, H+(z={(}))=H. and H*(3,0)
= H, exp(—a?z). This expression will be an asymptotic
expansion for large @, and the expansion will be a
functional of ¢{. When this is then inserted into the
free-boundary condition (20), we will then be able to
obtain an asymptotic approximation for { itself.

The justification for this procedure is based on some
results of Aronson.! He shows that, for a class of
equations similar to (15), there exist asymptotically-
valid solutions in any open domain (z>{(¢), t>1,>0)
which consist of a formal limit solution plus a boundary
layer. The formal limit solution satisfies the reduced
equation. For the case at hand, the solution to the
reduced equation is, of course, Ht=0. For 1=0, H(z)
approaches zero for z large, so that, clearly, the only
area of concern for z>{(f) is near the free boundary
and the origin. Thus, the asymptotic representation of
H+ will consist entirely of the boundary layer. Aronson’s
results do not exactly cover our case, but it is clear that
a simple extension of his work will give the same results
for the present case.

L3
t

Hyp = Hy

HiH, [H¥=He

HEz= ant+ But

H:-Bu;ihaf:?'&z
z={

Ht(z,00= Hc,.\"'t z
F1c. 3.
1D, G. Aronson, J. of Math. and Anal. 5, 1003 (1956).
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It is convenient, in treating Eq. (15), to make the
temporary transformation ?=gf. Then the equation
becomes

H,+=H+oH". (28)
Let H*(z,0) be represented by
H+(z,0)=a(z,9) exp[ate(s,0) [+ Hoexp(—alz). (29)

The first term on the right-hand side is of boundary-
layer type. The second term is a correction chosen so
that the condition at {=0=0 may be satisfied. Let us
consider first the term a(z,8) exp[ate(z,0)], and let

a(3,0)=ao(z,0)+a1(2,0)/a*+0(1/c),
$(@)=50(6)+¢1(6)/a*+0(1/a).

To satisfy the condition on the free boundary,
H+(£(8),0)=H ., we choose for ag and a;

ao({ (6),6)=H.— Ho exp[ —o¥¢(6) ],
a1(§' (0)70) = 07

and ¢({(6),0)=0. With these choices the condition will
be exactly satisfied.

Now we insert (29) into the partial-differential
equation (28) and formally expand the result in inverse
powers of a!. Equating coefficients of each power of
o to zero then gives a sequence of differential equations.
The first of these may be solved for ¢.

(30)
(31)

(32)
(33)

#(2,0)= — (z—¢(0)). (34)
The second and third give a¢ and a;, respectively.
ao(2,0)= (H.—~ Hq exp[ —at{o(6)])
Xexp[ —3o(z—0) ). (35)

a1(3,0) = e Ho+—t0{ —1H (£,415) (2—¢0)
+iH G (a—50)/ 2401 /at)}  (36)

(dots represent differentiation with respect to ). The
procedure may, of course, be continued to determine
a2, as, o, {3, etc. We may, therefore, write for the
boundary layer solution

a(z,t) = exp[ —3§o(z— o) J{ (H .~ Ho exp[ —ai{o])
o[ —3H (51458 (3— o)
+iH S (2—50)/21° ]} +0(1 /). (37)

With this choice of a and ¢, H* as represented in
(29) satisfies:

(a) H*(¢(1),t)=HA+0(1/a),

(b) H*(3,0)=H, exp(—atz), provided () — = for
86— 0,

(c) the differential equation (28), up to but not
including order 1/a.
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We may now write Ht correct to 0(1/a?). (We
revert to the variable ¢ instead of 6, but we will let
to(0) — fo(f). Dots now refer to differentiation with
respect to £.)

H (3,t)=exp[ — (e +3{aB) (z—{0) ]
X{(H.— Ho exp[ —a¥fe])+1/ab
X[—3HB(E1+1E%8) - (2—§o)

+1H o8 (5~ (0] 13+ Ho exp(—odz).  (38)

It is now possible to compute H,t|,.; and J;*Htdz so

that condition (20) may be written correctly up to
terms of order 1/« and (1/a) exp(—ait,) as

1 . 1 .
="l Hc(ﬁfﬂ‘*‘“i’lﬂ)
= B ot

— o exP(—a*i’o)(l—%ﬂfoa“’)l- (39)

— Ha_

Note that, for a— «©, (39) goes over exactly to the
Stefan type condition (25). This would be difficult to

ascertain without the specific representation of H+

given in (38).

Equations (14), (16), (17), and (39) now define a
new boundary value problem for the determination of
H~(2,1), {o(®), £1(2), etc., correct up to order 1/a. By
using the elegant method of Kolodner,'? a functional
equation for ¢ () ={o+ {1034 - - - may be derived:

. H.—H, <l0)]
YO H— Ho exp[— it ()]} + exp[———]

()} 44
_ [ At 00
0 4(r(t—7))t t—r
@)= () F
XeXpI ——-;;(t'——-T ’dT
i e i
0 4(r(t—1))} t—r
| I{ORR{ON:
XeXp[ ——m—}dﬂ (40)

This equation may be analysed to obtain a solution to
the asymptotic problem. It is possible, however, to
make use of the properties of the solution for large «
in a somewhat simpler fashion. The right-hand side of
(39) contains a term which will be exponentially small
for o large, except for {o(f) small. Thus we neglect this
term compared to the remaining members of (39).
Now for af large, if a new function {,(¢) is defined in

2], I. Kolodner, Communs, Pure and Appl. Math. IX, 1, 1
(1956).
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such a way that fa()=Fo())=81(0)="--{a(?)-- -, the
boundary condition may be written as

_.Hg_l h{(g):Hcfa/(l—a"i)‘

This choice of representation of the boundary condition
implies that a solution will be sought that takes this
form. It has the advantage of exhibiting explicitly the
dependence of the solution on a. The fact that a
solution of this type does exist is a justification for the
step. The problem is now the same as that solved in
Sec. 2 for the case of @ — o with H,in (25) replaced by
H./(1—a™%). The solution may thus be written

(41)

H
H-(s)=H,—

R 8/2
ke exp(ke2/4) f exp(—p2)dp, (42)
0

—ot

where &, is a constant determined by

H—H ka2

m=k“em(k“2/ 4 fo exp(—p)dp, (43)

with

Sall)=kalt. (44)

A comparison of (43) and (27) shows that magnetic-
field penetration (as ) slows up the motion of the
interface. The result, which is obvious qualitatively,
may be quantitatively evaluated by comparing the
solutions k¢ and k. of (43) and (27) numerically.
This result is valid only for af large enough so that the
exponential term of (39) may be neglected. Bearing in
mind that « is of the order 10%, this does not put a
heavy restriction on £, nor on real time r=¢- (1/c*)4wo".
We now turn, however, to the task of finding a solution
for small ¢, or really for small af. This is carried out in
the next section.

4. SOLUTION FOR at SMALL

It is convenient to reformulate the boundary value
problem in a slightly different manner than for the
boundary layer solution of Sec. 3. To effect this, let
H*(z,0)=etPy+(z,t). Then (15) becomes

.t =But. (45)
Also
wr (¢ (0),0) =M., (46)
and
ut(3,0)=H, exp(—alz). 47
Additionally it is useful to write
w (z,0)=H(2,0)—H.,, (48)
so that
Ui =UT (49)
u=(0,5)=0, (50)
w (t(),)=H.—H.. (51)



580

The jump condition on the derivatives Eq. (20)
becomes

(eut— ") g y= —af
T

-]

e *byt(z dz.  (52)

The equations in both regions, normal and super-
conducting, are now heat equations. The statement of
the problem requires #~ and #* to exist in certain
subdomains of :>0. Nevertheless, we find both #* and
= by assuming that they are continuable as solutions
of the heat equation everywhere in ¢>0. (Of course
this assumption will be justified as soon as #+ and u—
are produced.) )

It is well known that a solution to the heat equation
for t>0 may be represented as a distribution of heat
sources along the z axis. Thus, for Eq. (45) we write

+* w(o) exp[— (z—0)*/(4¢/8)]
+ = o
e f_ 2x1/6)} “

>0, (53)
and for (49)

e f 10) exp=L(a=o/4] o

s, t>0.
e 2(wi)}

These define both #* and %~ for the entire upper half
plane, providing w and f are known for the whole real
axis. The problem thus becomes one of choosing w and f
so that the conditions imposed on »+ and »—, Egs. (46),
(47), (50), and (S1) are satisfied. This process will also
yield the free-boundary curve, ¢ (£).

We now make two observations concerning the
function f(z) in (54). First, (50) shows that f(z) must
be an odd function. Second, consider the function fq(z)
corresponding to f(z) when a= . In Sec. 2 where this
case was discussed, we could have deduced that fo(z)
is the following step function:

(m)¥(H.—H.)
z>0

Jol2)= (55)

$ko
2 f exp(—p)dp

0

(m)

2 }ko
f exp(—pH)dp

0

(Hc_He)

<0, (56)

where ko is determined again by Eq. (27). With this in
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mind, f(z) for the present case is chosen to be the sum
of a step function and an odd function g(2), i.e.,

f@=3(g-h(2)+5(2),

h(z)=—1, 2<0,
=-+1, 2>0

g-1, a constant,

(57)

The function w in Eq. (53) is known for z>0. It is the
known initial value. Then w(z) is written

w(z)=Hg exp(—als), (58)
=w*(z), 2<0. (59)

Since the region not yet covered is that for £ small, {(2)
is now to be taken an analytic function of #,

z>0

£()=(1/8)} z £ult/B)
=& (/B0 (/)4 5=(/B) - - -,

while for g(z) and w*(z) we choose the respective
representations

(60)

g(z)= X gon18¥", (61)
n=1
and
w*(2)= Y w3 (62)
n=0

These series are substituted into the equations for
wt and %~ [(53) and (54)] and then used with condi-
tions (46), (47), and (51). A set of equations is produced
by equating coefficients of like powers of #2. In this way,
for instance, the coefficients g1, gs- * -wo, w1 and finally
¢o and {1, etc. may be determined. Without entering
into the details the results are as follows:

{o 1s determined from the relation

He—Hc E(%fo/ﬁ*)
= A (63)
H.—H, (@B)}G—E(¢o/m))
where
o
EG= [ exp(—pap. (64)
For 8=1, this becomes
(H.—H,)/2(H,—Ho)= E(3¢0)/x%. (65)

Then the expression for {1 can be shown to be (when

s=1)

Q—Pp $o
(o)
© ( 20 )L‘OE(Q—P)/ZQ]—eXP(“i’oZ/‘l/ﬂ'*)]

,  (66)

[(@—P)/20Q] “

(p+1—6) e (=s3/9)] "2_115(2;) +[Ai:fz(;o[(@—P)/zoj—exp<—;oﬁ/4/w*>>
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where P=(H,—H,)/H, and Q= (H.—H)/H.. There
is a similar expression obtainable for 8 other than unity.

S. SUMMARY OF RESULTS

The results of Secs. 3 and 4 for o either large or small
may be summarized by exhibiting the expressions for
the free boundary. For the first case (using the original
dimensional variables now but taking xo=1 cm)

Ea (T) = ka 5, (67)

T

with &, being determined by Eq. (43). This includes the
limiting case a — «, k,— ko (Eq. 27). The quantity
¢/ (4wa¥)} will be very close to unity for some of the
common superconductors at a temperature not too close
to the critical temperature 6., and we shall take it to be
equal to unity for these calculations. It appears as a
common factor and could instead be incorporated into
the time variable. It is clear that one must only inspect
the size of the parameter a to gain a knowledge of how
k, differs from ko. From its definition

a= x0241l‘/A62,

the dependence of o on the particular superconducting
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material depends only on A which is a number of order
10~%, Thus, « is of order 10" when x4 is of order unity.
It is therefore evident that such a large number cannot
give values for k, much different for k,. We have
actually computed &, for a¥=10* and it differs for k, for
the same P=(H,—H.)/H,. only in the fifth decimal
place. Plotted curves for £(7) in a useful range for r do
not differ at all from those for £,(7) and this is true
for any P in the range of interest. Thus, for large
superconductor length scales (xo=1 cm), o is large, and
the effect of the penetration parameter on transition
rate is negligible.

On the other hand, the analysis of Sec. 4 indicates
that the influence of the initial external field Ho may
not be negligible. The motion of the boundary is, in this
case,

¢ 1 ¢ 1
(1}

—+T —
4ra¥ B2

— %
£(r)=1¥ (o B

+oo (68)

(%o has been again set equal to 1 ¢cm.) It is convenient
for the discussion to take =1 and ¢/(4wa?¥)}=1. o
and {1 are given by Egs. (63) or (65) and (66) in terms
of the two parameters P and Q. From the definition of
P and Q we have

P<Q<P+1. (69)

Q assumes its lower bound when Hy=H, and its upper

15160 —
rd
- Q=1.09
- Q= 1158
Q= 1.247
n Qs 1.379
-
}_
14 -
&(r)

5x16°

. Q1247

%, ".Q=L158
% Qe1.09
) .

1 1 1 1

B | J S | )

P = 0.969
a= 108
——— NUMERICAL

..... ASYMPTOTIC THEORY

--------- 2 TERM SMALL
TIME APPROX.

1 ) 1

10°9 5x10°9

0 15X10° 2x10-8

T

Fic. 4. Normal front motion £(7) for various values of Q. Q= (H.— H,)/H., P=(H.—H.)/H,.
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1.5x10°
L.
162 |-
()
- -
. - - -
o -
- - -
-
5 |- -
- -
L - Q=158
P P =0.969
e T e, . 4
e “ asi0o
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, -~ ASYMPTOTIC
VA seveee 2 TERM SMALL
10 /’ TIME APPROX.
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T

F16. 5. Normal front motion £(7) for a=10%

bound when Hy=0. From (65), when Hy=H,, {o— ©,
and, of course, the series expansion indicated in (68)
loses its validity.

Some curves have been prepared showing the free

boundary dependence on Q. In Fig. 4, P=0.969. The
dashed curve is the free boundary as a function of time
for the asymptotic theory of Sec. 3 with af=10¢,
k.=0.1225. It is valid, of course, only in its upper

3!!6'
2.5x16'
zxi6'F
éin)
|.5x|6' -
Q= Li58
1 -~ P= 0.969
1x10 e a=10
---- NUMERICAL
m——ae ASYMPTOTIC
--------- 2 TERM SMALL
51‘62 TIME APPROX
’/
o i ] i ] i 1 i [] i1 ] i 1 1 I ] ] L (1
o 1x16% 2x16°2 32162 axi6? 5xi6°

Fi16. 6. Normal front motion £(7) for a=10.
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region, for ar large. The dotted curves show the theory
of Sec. 4 in the two-term approximation. The solid
curves are the result of a numerical solution of the
exact boundary value problem. This numerical study
has been carried out separately by Werner Liniger of
IBM Research and will be reported on in connection
with a study of the transition through a finite strip
which Liniger is now preparing. The numerical solution
presents special difficulties for such a free-boundary
problem; these will be discussed in Liniger’s report.
We are very grateful to him to be able to use these
results.

In general, one can see that the asymptotic theory is
very good for this large value of . For small values of
time, the slope of the curve is incorrectly given by this
theory but correctly given by the two-term approxi-
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mation. For the larger values of Q, the two-term
approximation shows its best agreement.

For smaller values of @, one would expect the asymp-
totic theory to be at greater variance with the exact
results. This is shown on Fig. 5. Here a=10* and
P=0.969. The case Q=1.158 is exhibited and may be
compared to the similar case in Fig. 4. The two-term,
small time expansion would be useful up to times of the
order of 3)X10~® sec in this case. An even smaller value
of a is shown in Fig. 6. The slope of the asymptotic
curve is clearly in error at t=0. The small time expan-
sion is good here out to =3X 1072 sec.

It should be remarked that the small values of a
may already refer to cases in which the London theory
is inapplicable. Nonlocal effects probably have to be
accounted for in these situations.
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The frequency spectrum of a disordered one-dimensional lattice is calculated via an investigation of the
phonon propagator. The spectrum is evaluated in detail for a low concentration of light impurities inserted
at random along a linear chain. It is found that an impurity band occurs near the frequency of the local
mode. Higher-order effects resulting from clusters of impurities are calculated and discussed.

I. INTRODUCTION

HE purpose of this paper is to present a new and
fairly simple technique for calculation of the
frequency spectra of disordered lattices. The particular
case considered is a one-dimensional chain of point
masses connected to each other by springs. The disorder
is introduced by choosing fixed concentrations of two
different masses and arranging these masses at random
along the chain. This one-dimensional problem recently
has attracted a considerable amount of interest. The
dynamical properties of the model may be qualitatively
similar to those of a great many physical systems
ranging from real crystals containing impurities,
through electrons in alloys, and perhaps even to long
molecular chains occurring in organic materials.
Furthermore, the disordered chain provides a relatively
simple model for the theoretical investigation of
transport phenomena.

Of the theoretical techniques which have been applied
to this problem, one of the most successful in terms of
actual results seems to be the moment-trace method
originally devised by Montroll for calculation of the
vibration spectra of ordered crystals.? It turns out that,
with some work, one can compute the even moments
of the disordered spectrum exactly. Domb, Maradudin,
Montroll, and Weiss have performed this calculation
up through the twentieth moment; and their poly-
nomial fit to the spectrum agrees roughly with the
results given in this paper.® Somewhat more recently,
Dean has succeeded in devising a machine technique
for computing these spectral functions.*® Especially
in the case of large mass ratio, Dean finds much more
complicated spectra than those given by Domb et al.
As we shall see, the present calculation lends support
to Dean’s results, although we shall not find it con-
venient to make a really direct comparison. A definite
disadvantage of both of these methods, however, is
that they offer little or no insight into the actual
dynamics of the lattice. For example, they tell nothing
about phonon lifetimes or the nature of energy propa-

1For a review of previous approaches to this problem, see
A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. Weiss,
Revs. Modern Phys. 30, 175 (1958).

2 E. W. Montroll, J. Chem. Phys. 10, 218 (1942); 11, 481 (1943).

3 C. Domb, A. A. Maradudin, E. W. Montroll, and G. H. Weiss,
Phys. Rev. 115, 18, 24 (1959).

4P. Dean, Proc. Phys. Soc. (London) 73, 413 (1959).

§ P, Dean, Proc. Roy. Soc. (London) A254, 507 (1960).

gation in the impurity bands. The present method does
seem to give information of this sort.

Qualitatively, the dynamical properties of the
disordered chain are not difficult to predict. We know
that the introduction of a small number of impurities
along the chain will cause the ordinary phonon modes
to decay. Equivalently, an excitation with a given
wave number will not propagate with a well-defined
frequency, but will have associated with it a width.
Furthermore, we know that if the impurities are heavy,
they will cause a shift of the spectrum towards the
lower frequencies. The more interesting situation occurs
when the impurities are light. A single light impurity
inserted into a long chain gives rise to a high-frequency
“local mode” in which the displacements of the in-
dividual mass points fall off exponentially away from
the position of the light mass.®” (The mathematical
description of this mode is reviewed at the beginning
of Sec. V.) Thus, a chain containing a small number of
light impurities should propagate signals at frequencies
near that of the local mode. That is, we expect to find
an impurity band near the upper end of the spectrum.

In this paper these impurity effects will be evaluated
via an investigation of the phonon propagator. The
formal connection between the spectrum and this
propagation function is established in Sec. II. In Sec.
III it is shown how the perturbation expansion for the
propagator may be resumed after performing an average
over configurations of the masses. The actual evaluation
of the spectrum is reproduced in Secs. IV and V; and
these results are further discussed and interpreted in
Sec. VI.

II. FORMULATION OF THE PROBLEM

We consider a very long chain containing two kinds
of mass points M and M’. Let the less common mass
be M’, and let ¢ be the frequency with which M’
occurs. That is, the probability of any particular mass
being M’ is ¢. In most of the following work we shall
assume ¢<<1. Thus, we shall consider the chain in
which all points have mass M as the zeroth approxi-
mation to our system and refer to it as the unperturbed
lattice.

Start by considering a particular distribution of

S E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).
? L. M. Lifshitz, Nuovo cimento Suppl. 3, 716 (1956).
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masses M and M’ along the chain. For this con-
figuration the displacement x; of the /th mass point
obeys the equation of motion

miEr =7 (%1~ 2%+ 2141), 1)

where m;, is the mass at the /th point and v is the force
constant, assumed the same for all links in the chain.
We rewrite Eq. (1) in the form

E1— (v/ M) (x11— 2201+ 20_1)
=y[(1/m)— /M) (%11 221+x11).  (2)

The transformation to the normal coordinates Q. of
the unperturbed lattice is

1 N/2
= 2wikl/ N —iwt ], 3
% (NM)nEN/szeXp[ mikl/N—iwt],  (3)

where N is the number of mass points in the chain.
On substituting (3) into (2), we have

(wi—at)Qir= —é: D, Qw, (4)

where
wr=wpy|sin(rk/N)|, wu= (dy/M)}, 5)

wi? M 2ri(k'—Ek)l
Sy p=—Y -——-1) eXp[———-—]. (6)
N m N

and

Next we introduce the notation

[D1(w?) Ji o= (it —0?)bp 1 +Br 17, (N
so that

2x (D7) Qi =0. (8)

The exact eigenfrequencies £, for this particular con-
figuration of masses are the roots of the equation

detD(w?) = ﬁ (@2~ w?)=0. (9)

n=1

If we invert the matrix D! after diagonalization, we
find

TrD(w?) =2 n(Qn2—?) L (10)

Finally, we define the spectral distribution function

2w
= lim — 22
g(w) l\lfl—{IrlmN%B(Qn w); (11)

where it is understood that the delta function which
appears here is the limit of a function whose width is
much greater than the spacing between the 2,’s. That
is,

1
8(2,2—w?)=—lim Im
T 0

; (12)

Q2—wl—1e

585
and we keep €>(wa/N) in taking the limit. Thus,
2w 1
g(w)=— lim — Im TrD(«w?+7¢). (13)
rSoe N

Since the trace is independent of representation, we
may evaluate (13) in the % representation as defined
by Eq. (7). Furthermore, the process of averaging over
mass configurations has the effect of restoring momen-
tum conservation in D, because the ‘“average” chain
possesses translational invariance. We write

Dy 1 («?) =D (w6 . (14)
Then, since the operation of taking the configuration

average commutes with the other operations in (13),
we have

2w 1
Jw)=— lim — Im > Di(w?+ie). (15)
T V2= N E
e—0
III. CONFIGURATION AVERAGE
According to Eq. (7), Dy, (w?) satisfies
6k,k' 1
Dy, i (w?)= - 2 Pr Dy i (@?),  (16)
wie—w?  wd—at b
which may be iterated in the usual way:
S 1 1 1
Dy p (o) = iy +
wk2_w2 wk2_w2 wk,2.._w2 mk2—w2
L7 T TR |
X2 +---. (A7)

B wki—w? wpli—w?

We achieve a considerable simplification of this formula
by introducing the configuration average at this point.

Before drawing general conclusions, let us consider
the two simplest terms in D. First look at

(‘pk,k’)av

wrr? 5 M 1) [21ri (k'—-k)l]>
=(— ——1 ) exp| ———1{) .
N m; P N

av

(18)

This expression is evaluated by keeping ! fixed while
summing over configurations. Obviously, we get zero
contribution from any configuration in which m;=M.
Since m;=M’ with frequency ¢, we have

gAwy? 2mi (k' —k)l
<q)k,k’>av= [ ]

= q)\wkr25k,k:, (19)

Zev

where we have used the notation

A= (M/M")—1. (20)
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Next consider the second-order term,

(@i i, b Jav

Wi Xop? M M
-z GG
Nz ni \my miz

[Zm' (F'—k)y i (B — k"),
Xexp ————] exp[—————]> .
N N a

\s

(21)
If we distinguish the cases l1=1Iy and /;#l;, we may
write

(@i, 1 Pre 1 Jav
2ri (k'

vl

N o i (B — By
+— exp[———]
Nz Ils N

i (B — ),
Xexp[———-—]
N

= (ox e N/V) (g— P
FwpPwr PN Ok ke Ok i

N 2 5 [
= e
N2 [ P

(22)

Note that, in performing the second sum, we added
and then subtracted the term in which l;=/,, thus
finding a correction of order ¢? to the coeflicient of i

Now we are ready to find a prescription for the
calculation of the configuration average of a product
of any number of ®’s. The expression we want to
evaluate is

<q)k1,k2 M 'q>kn-kn+l>nv

() ()
ll “ln \MI mi,

2mi ] ;
XCXP[F(Pl 1t pilit )]> , (23)

av

where p; is the momentum transfer (k;1—%.) in the

r A1
H ‘ I
k k k K k k k k
(a) (b)
«
,/"‘:\\ / ! \\ ///IA/\\A{\\
<l’l' HA n’ HEAY -l I’I \:\\\
k k k k k
(c) (d)

Frc. 1. Some graphs occurring in the perturbation expansion of D.
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tth scattering event. The first step is to write down all
possible partitions of the /;’s and to set the /’s equal in
each group. That is,

<¢k1,k2 e )av

——1

2wl
Xexp[‘—N—(P1+P2+ v +Pn)]>

a2
e G ()
yr sxj—lsiz ” flh mh "
e P [ e
eXp Y exp l ..
A N av
w2 - - M 81
+ zo (£ (=-1)
N*» 51,52,53 Wisla \mip
s1tsets3=n  1#la =l

(,,7;1) ,;;‘1)

2wily
Xexp[ ¥

.)]...>uv+...’ (24)

where > ® sums all partitions of the /s into two
groups, >_® sums three groups, and so on. On taking
the average and summing over the /s, we find an
expression of the form

Wk
AP, (q)8p1+ - - ++pn,0
Nn—l

whki?*

-+ >\" >o P81(4)P82(q)5m+ 200p;+ -0

N~ 1,82

wk 2- .

+ A" 2@ Psy(q)Psa(q)Pss(g)8..6..5...

Nﬂ—3

81,82,83

+oee, (29)

where P,(¢q) is an sth-degree polynomial in ¢. For
small ¢, the leading terms in P, are

Py=g— (25 1= 1)@+ - - -

Note that, whenever a sequence of momentum
transfers occurs in a Kroenecker delta symbol, e.g.,
Op1+---4pn,0, then all of the associated scattering
events have occurred at the same lattice point /. This
fact suggests that it will be useful to adopt a diagram-
matic representation of the various terms occurring
in the perturbation expansion of D. In Fig. 1 a hori-
zontal line represents the phonon of momentum £ and
frequency » whose propagation is described by Di(w?).

(26)
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° o, .
F1G. 2. The graphs | AN 4 \
which contribute to [ I A
G, i Wt R ANSUNK W R S T W T
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The interactions are denoted by dashed lines which
start at dots representing the lattice points where the
interactions occur and connect to the phonon line in
the order in which they occur in the perturbation
expansion (17). Figures 1(a) and 1(b) are the graphs
associated with Egs. (19) and (22), respectively.
Figures 1(c) and 1(d) depict typical graphs associated
with the >°® term in Eq. (25).

These graphs have the general form of a single
phonon line with a series of self-energy parts. In the
usual manner, we define a proper self-energy part as
one which cannot be broken into two such parts simply
by cutting the phonon line once. For example, Fig.
1(c) contains two proper parts, whereas Fig. 1(d)
contains only one. Since the total momentum transfer
associated with a single lattice point is always zero,
the proper self-energy parts are always diagonal in the
k index. Let us denote the sum of all proper parts
by Gi(w?). Then

wkz_wz

Di(wt)= ACHIACY

wkZ__w2

1
= (27)
wit—w+Gr(w?)

IV. CALCULATION OF FIRST-ORDER TERMS

In this section we shall compute Gy (w?) to first order
in ¢ and use the resulting expression for calculation of
the spectrum.

According to Eqs. (25) and (26), the only self-energy
graphs which contain contributions linear in ¢ are
those in which all the scattering events occur at the
same point in the lattice. Thus the leading contribution
to G is the sum of graphs depicted in Fig. 2. To lowest
order in g, this sum is

6O \ i (—1)minn
w?)=qw —
, ( gow n=l N1
5 wki? ) ( Wkn_1? )
X oo ———
k1, kn—1 (.‘)1012—(402 wk,._12—w2
At grwi?
A it Kw*
1+-% 1+

N k' wk'2—w2 N & wk/2—w2
where

k=N (14+N)=1—(M'/M). (29)

Before taking the limit N — o in (28), let us examine
some qualitative features of these results. The poleslof
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GV (w?) are determined by

Kew?
1+—3

N & wkﬂ—wz

=0, (30)

which is the dispersion relation for a single mass M’
inserted into a chain of masses M. For o?<ws?, the
solutions of (30) lie in one-to-one correspondence with
the unperturbed spectrum of w;’s, the frequency shifts
being of order N, In the case M’ <M, 0<«<1, there
exists a single solution of (30) for w?>wx?. This is the
local mode mentioned in the Introduction. A graph of
GV (w?) is shown in Fig. 3.
The poles of Di(w?) lie at the solutions of

wit—wy, 1+ Grwe,8) =0, (31)
which are illustrated graphically in Fig. 3 for some
particular value of &. Notice that for each value of %
there are many solutions ws,; of (31). In other words,
in the “average chain,” a phonon of wave number %
does not propogate with a single well-defined frequency.
The contribution to §(w) from any one of the frequencies
associated with % is proportional to the residue at the
corresponding pole of Dy (w?), which is

Res (Dy(a)}

= [- 2wk,i+ (8/6w)Gk(w2) | w—mk,i]—l. (32)
Again referring to Fig. 3, we see that this residue is
largest for wg,; in the neighborhood of w; and diminishes
rapidly on either side of this point as dG/dw|w=wr,;
becomes large. Thus there is a width associated with
each phonon of wave number %; i.e., the phonon has a
finite lifetime as a result of the lattice disorder. Also
notice that, when M’'<M, each phonon is coupled to
the local mode, the coupling being strongest for large &.

If we now take the limit N — « as prescribed by
Eq. (13), the line of poles in the region w?<wa? turns

Fic. 3. The function G®. The small circles indicate
the solutions of Eq. (31).
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into a branch cut. We have

1 1 1 /2 dx
lim ~ ———=- f -
>>IZJ;}J°\°7—>0N kwt—w’—ie T J_ppwn sinfr—o?
i
= (33)
Th w(wit—w?)}
us,
wak2(wM2-—w2)% —1
Di(o?) = [wk —w?+ ] . (34)
(wr— )3 +ikw
The cut is defined by (33) so that
gra (W —wp?) !
Dk(w2)=[wk2_ 2+W] for w2>wM2' (35)
W—w — KW

If we analytically continue from above onto the
unphysical Riemann sheet in (34), we find that D has
a single pole for each value of &. To first order in g, this
pole occurs at

w=wk+Ak—iI‘k 3

wi gr(wa—wi?) wi glwi (Wi —wi?)}
D= e T = T T (36)
2 wpt—wt(1—x?) 2 wrt—wit(1—x2)

T'; being a measure of the width described in the
preceding paragraph. In the region w?>ws? according
to Eq. (35), Di(w?) may have a pole on the real axis
just above the local mode frequency.

The computation of §(w) now may be performed
explicitly :

20
j(w)=lim — Im >_ Dj(w?+1
g(w) New® N Zk: k(w+ie)

2w /2
=—1Im f dx
> —x/2
(=)} -
X [wMz sinzx( 14 ) —w2]
(war— o) ikew
2

(37)

wM2qx(wM2—w2)%]’%
(wrr — )i tikw '
For frequencies «?&wy®, Eq. (37) yields just the
unperturbed spectrum for the ordered chain all of

whose masses are equal to the mean mass of our
disordered system. That is,

=— Re[wMz_wzJT_

™

g)=(2/m)[1/ (wii *—e)t], *<<an?, (38)
where _
M=(1-qM+qM’
and
wiz 2=/ M2wp?(1+qx) (39)

to first order in ¢. At the upper end of the spectrum,
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wrwy,

F1c. 4. The spectral function g as expressed in Eqs. (37)
and (40) plotted for g=+%5 and M =3M".

on the other hand, the correction term predominates
in (37). A singularity still occurs at w?*=wy?, but its
strength is reduced from inverse square root to inverse
fourth root. Thus, the high-frequency impurity modes
may be said to be taken from the upper end of the
unperturbed phonon spectrum. It turns out that the
inverse fourth-root singularity is retained in the
second-order corrections [as may be seen from
examination of Eq. (59)7]. However, it is likely that this
singularity will disappear in a self-consistent calculation
to all orders in the concentration g.
For w?>wy?, we may write (37) in the form

(w) ’ R [ , g —and)t
i(w)=— Re —
Jlw oM —w o) —ro

—%

| w
T
For values of w between wy and w,, the frequency of
the local mode, the quantity under the square root in
(40) is negative and § is zero. For a small range of
frequencies just above wo, however, this quantity
becomes positive. Thus, for M’'<M, the local mode
singularity in G, (w?) gives rise to an impurity band
in §(w).

The spectrum as expressed in Eqs (37) and (40) is

plotted in Fig. 4 for the case ¢g=¢5 and M =3M".

V. SECOND-ORDER CORRECTIONS

As we have seen in the previous section, our “average”
lattice will propagate phonons whose frequencies lie in
a narrow band near the frequency of the local mode.
The local mode frequency itself appears as a singular
point in the function G (w?), the term in the phonon
self-energy which is linear in g. Now, if we insert any
finite number of light mass points into an infinitely
long chain, we always find a number of new high-
frequency normal modes of the chain. In the disordered
lattice we then expect to find narrow impurity bands
at each of these new frequencies. Furthermore, we
expect the eigenfrequencies associated with a cluster
of, say, n inserted light masses to appear as singular
points of that term in the self-energy which is pro-
portional to ¢”, the probability of finding the cluster
in the chain.

In this section we shall calculate the contribution to
§(w) from clusters of two light masses. Before looking
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into the details of this calculation, however, let us look
at some of the properties of the isolated clusters. It
will be worthwhile to look first at the case of a single
light mass M’ in a chain of masses M. If M’ occurs at
the position /=0, Eq. (4) becomes

(@~ w?)Qr=— i (@r®/ N)NQ. (41)
On dividing (41) by wi?—w? and solving for i wi2Qs,
we arrive at the dispersion relation

14+ /N Zilw?/ (=’ 1=0, (42)

which is exactly the same as Eq. (30). The individual
displacements associated with the local mode are

1 27!‘1:kl {2 e2flz

X~y exp{ ]~ f —_— —dx

k w;,2-—-w02 N —7/2 wM2 sinzx-—cm)?
. 43)
~—————TJa(wo/wm) ]I, 150,
wolod—and)t

where _

a(t)=1=2242t(2—1)}, t=wo/wny, (44)

and wo is the high-frequency solution of (42). The
integration involved in (43) is performed in the
Appendix, where it is apparent that the magnitude of
a always must be less than unity. Thus, we may
express (43) in the form

xi~expl— (|2 /b)], lo=—[log|a|T. (45)

For M=3M', wy/wy=1.34, and ly=0.64; i.e., the mode
is highly localized for this mass ratio.

Next consider the case of two light masses inserted
at, say, positions 0 and » in an otherwise uniform chain.
Equation (4) is now

(W — MOk

B Z)\wk»2 i+ [21r’i(k'—k)v l 1
X

The new eigenfrequencies may be obtained from (46)
by solving for
A= (1/N)Zk wiQr

B= (1/N)Zk wkz exp[kav/N:le
We have

and

Qr=—[N (wit—w?) [A+exp(—2nikv/N)B]. (47)
Thus,
A=—\(w,0)4—\(w,—v)B
B=—\f(w,r)4—X\(w,0)B, (48)
where 2wt/ N)
1 wk2 TIRY V
fop)=— 3 TR
N wl—a?
b Ta(w/e)]". (49

(e2—wp?)}
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(a) (b)
Fig. 5. The two kinds of reduced graphs which contribute to G2,

The resulting secular equation is
[14-2(w,0) P—Nf (w,2)f (w0,— ») =0.

For »=1 (the two light masses next to each other) and
M=3M’, (50) has roots at w/wy=1.06 and 1.53.
Since the single modes are so strongly localized, we
may expect the terms in which the two light mass
points are separated by one or more heavy masses
(J»|>1) to contribute very little to the second-order
spectrum.

On having tentatively identified the singularities in
the second-order self-energy Gx® (w?), we turn now to
its detailed calculation. There are two different con-
tributions to this second-order term. First, there are
corrections of order ¢* to the graphs considered in the
last section in which all the scattering events occurred
at the same point in the lattice. That is, we now must
include the ¢ term in P,(gq) as given in Eq. (26).
Second, there are the graphs, evaluated to lowest order
in ¢, in which two different lattice points take part in the
scattering. Let us denote these two corrections to the
self-energy by G@ and G®?, respectively.

G@D is evaluated easily by using Eq. (26) and the
analysis of Sec. IV. We have

(50)

GL@ P () = s i;z (=N 2= 1)[f(w,0) ]!

2221 (w,0)
= gPwid

Xf(@0)
20 (00)

N (00

(1)

[Compare this expression with Eq. (28).]

In order to evaluate G®2, we must sum all graphs of
the sort shown in Fig. 1(d), remembering that the total
momentum transfer at each of the two lattice points
must be zero. The first step in evaluating this sum is
to reduce each graph to a form similar to one or the
other of the two graphs shown in Fig. 5. In this figure,
each wavy line represents any number of consecutive
interactions at a single lattice point. Mathematically,
each wavy line indicates a factor

Awe? Awp? wky?
tk,k'(w)= Z +---
7 N2 B wkl—aw?
)\wk'2 1 wi?

= =T

- = (52)
N 1+M(w0) N
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The sum of all diagrams like Fig. 5(a) in which the
same number of wavy-line interactions occur at each
lattice point is given by

tk,kl(w) .. 'llczn..l,k/'(w)

—N¢Y T
1 7=2 k1,---ken—1 (Whi2—?) - - - (Whap—12—w?)

X8k —ko+ky—--- +hon—1-k, 0. (53)

Similarly, the sum of all diagrams like Fig. 5(b) is

© thky ()« + thon ()
+N2q2 Z
n=1 k1,---k2n (wk12—w2) te (kanz—wz)
X8k1—katks—- - - +han-1~k2n, 0. (54)
If we write the delta function in the form
1 N/2 2mwivk
. ( (55)
v~—NI2

then the sums over %, &, etc., factor and we have

Gk(z,z)(wz) dmivk
— 2y
o,

e e T e
X[ e) L f(w,») ][ f(w, —») ]

n=2

ol X T [H) P ITh e, =0T (56)

n=l v

=gwilt(w) P 2

G p){1—exp(— 2wivk/N)t(w)f(w,2)}
1= [ 1) (@) fw, —») ‘

By referring to the definition of /(w) in (52), we see
that the poles of G®? do, in fact, occur at the solutions
of (50), and that the integer » plays the same role in
both equations. In (56), however, we have a contribu-
tion for »=0,

[f(,0)F
G2 (02| o= gZ0i[ 1 (00) P
mo=gwi’[#(w) ] D)
N[ (w0)
=gwi’ cl ,» (57)

(140 (w,0) PL14+2M f(w,0)]

which occurs because we summed over the two lattice
points independently of each other in deriving this
term. This mistake is corrected by including G®V as

given by (51).
. LU
(1M (w,0)
= g% f (w,0)[#(w) I*.

Notice that the only remaining singularity in (58) is

(58)
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a second-order pole at the frequency of the isolated
local mode. In fact, each nth-order correction to Gj(w?)
will contain an nth-order pole at the local mode fre-
quency; thus, the expansion in powers of ¢ cannot
converge very near w=wo. This divergence implies a
shift of the position of the singularity in Gi(«w?) and
a resulting displacement of the impurity band. This
shift might be calculated by summing the most singular
terms in Gr(w?) to all orders in ¢; but we shall not do
this here. In any case, the shift must be small for small
g and well-separated impurity bands.

On returning to (56), we see that the residue of any
pole in G®? contains a factor [e(w/wa)?* arising
from the factor f(w,») f(w, —»). As mentioned above,
a is always less then unity, and is, in fact, of the order
of 0.2 for the example calculated here. Thus, the pole
strengths decrease rapidly as the separation of the
light mass points increases. This justifies our earlier
guess that well-separated impurities will not contribute
much to the spectrum.

For reference, we write out a complete expression for
the second-order self-energy :

G ()

= Pwit] f(0,0[1(w) P+2[1() ]

L [/ (w») PL1—#(w)f(w,) cos(2mvk/N)]
- 1—[#(w) f(w,) '

VI. DISCUSSION

(59)

As shown in Fig. 4, the spectrum calculated here is
in good qualitative agreement with the results of
reference (3) for a case in which there is only a small
concentration of light impurities and the mass ratio
M/M’ is relatively large. It should be mentioned that,
in their published paper, Domb et al. indicate a second
impurity band at w/wy=21.7. An examination of their
calculation, however, indicates that the moment in-
version was converging very badly near the upper end
of the spectrum; so we have omitted the second peak
in Fig. 4.

There is good reason to believe that the calculation
described in this paper is essentially exact for sufficiently
small impurity concentrations ¢. In the case of light
impurities, although the #nth-order correction to G(w?)
introduces a large number of infinite spikes in §(w),
the area under each such spike is only of order ¢g*. In
this sense, our series of approximations in which Gy (w?)
was expanded in powers of ¢ yields a convergent
expression for ¢, at least for small ¢.

On the other hand, it is apparent that our procedure
does not converge for values of ¢ near unity. In such a
case it would be appropriate to expand Gi(w?) in
powers of 1—g, i.e., to think of inserting heavy im-
purities into a light lattice. In this case, the spectrum
would be given by Eq. (37) with a negative value of



SPECTRUM OF A DISORDERED ONE-DIMENSIONAL LATTICE

. The absence of spikes in this expression indicates
that, at some value of ¢, there must be a radical change
in the nature of §(w), and that this change must be
associated with a divergence in our procedure. As ¢
increases, the higher order spikes become more and
more important, and the spectrum acquires a very
complicated structure. The correct nth-order term in
our expansion is roughly equal to the number of modes
associated with all possible nth-order clusters of im-
purities multiplied by the average area under an
nth-order spike (~¢"). When this sum of areas diverges,
¢ is no longer a good expansion parameter. Note that
the critical value of ¢ depends upon the mass ratio.
The number of possible nth-order clusters depends
upon the number of heavy masses we can insert
between two light ones before the coupling between
the high-frequency modes becomes so small that the
cluster is effectively broken. Thus, the contribution to
g from the higher order clusters is larger when M/M’
is close to unity and the local modes are not very well
localized. Conversely, we expect the spikey structure
of ¢ to persist to higher impurity concentrations when
the mass ratio is high. For example, Dean® finds an
extremely complicated § in the case M/M’'=3 and
¢=0.5. For actual calculation of spectra in such
situations, Dean’s technique is probably preferable
to ours.

On returning to the simpler case of a small con-
centration of light impurities, it looks as if energy
propagation in the impurity bands may be similar to
a quantum-mechanical tunneling process. As we have
seen in Sec. IV, the local modes are coupled weakly to
the phonons. Via this coupling, the energy of excitation
of one impurity must be able to “leak” across a region
of heavy masses to the next impurity position. The
average rate of energy transfer will be smaller the
larger the separation between light masses. Such
processes may have an effect on the transport properties
of disordered lattices; it is hoped that the techniques
devised in this paper may shed some light on this
question.

Finally, it should be noted that there is no reason
in principle why the present calculation cannot be
‘generalized to apply to real three-dimensional crystals.
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APPENDIX. EVALUATION OF f(w,v)

The function f(w,») as defined in (49) and used at
various places in this paper is

Jomat 33 @l epQriby/N)

N r=np2 wit—w?

(A1)

In the limit ¥ — oo, this sum may be evaluated as in
integral in the form

w? exp(2mikv/N)
flwp)=bno+—2 ——
N & wpy? sin?(rk/N)—w?

2 iz

w2 fvr/2
wwy® Y _pe sinZx— 2

= 6v,0+ (A2)

t=w/coM.

dx;

With the transformation z=e®, the integral in (A2)
becomes

1 /2 eZirz
h(ty)=— f dx
T Vg sin¥x— £
1 2714z
B 21ri unit circle %[Z— (l/z)]2+t2
2 22v+ldz
=—— f , (A3)
wiJ [P ()][#—a(1)]
where
ag(H=1-2042(2—1)} (A4)

In (A3) we may consider only positive integer values
of » since f(w,v) is a symmetric function of v; thus, the
only singularities of the integrand in (A3) occur at
2?=a, (f). The integral is nonvanishing only if the two
functions a, lie on opposite sides of the unit circle.
Now Z%(t,v) has a branch cut along the real axis for
‘—1<i<+1. For |¢|>1, it is apparent that |ay| <1,
|a_[>1. Thus, A(t,») is given by the residues at
22=a,(#); and, by analytic continuation, the resulting
expression for k(fv) must be valid throughout the
physical sheet of the ¢ plane. In this way we find

h(ty)=—[1/t(— 1) et ()]
and Eq. (48) follows immediately.

(AS)
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Fluctuations in a circuit consisting of a diode and a condenser have been treated by means of approximate
methods [C. T. J. Alkemade, Physica 24, 1029 (1958); N. G. van Kampen, sbid. 26, 585 (1960)]. In the
present paper, exact eigenfunctions and eigenvalues of the master equation for this system are obtained,
and the spectral density of the equilibrium fluctuations is calculated. The most striking result is that the
spectrum of the eigenvalues (which are reciprocal relaxation times) has an accumulation point, corresponding
to the average time interval between two successive electron transitions.

1. INTRODUCTION

N this paper an exact calculation is presented of the

spectral density of the equilibrium fluctuations in

a simple model of a nonlinear system. The system is an

electrical circuit consisting of a condenser and a diode

in contact with a heat reservoir. It has been shown! that

the electrical fluctuations in this system are governed
by the master equation

dP(N)/dt=P(N+1)—P(N)
Fi{e WDP(N—1)—e¥P(N)}. (1.1)
P(N) is the probability of having N electrons on the left-hand
condenser plate (see Fig. 1); e=e?/kTC, ¢ being the electron
charge, C the capacity of the condenser, T the temperature of the
whole system, £ Boltzmann’s constant;
W1 - Wz— 62/ 2C
P27
x T
where W, and W, are the work functions of the two electrodes;
t is time measured in appropriate units.

{=e

The reasons for this investigation are twofold.

Firstly, the problem of fluctuations in nonlinear
systems has been studied by several authors,'° but no
agreement has yet been reached. It therefore seems
worthwhile to obtain an explicit and rigorous result for
a nontrivial example. In particular, it will be shown
that there are terms in the spectral density that cannot
be obtained by the usual expansion methods.

Secondly, the model illustrates the distinction between
slow fluctuations, which involve large numbers of
particles, and rapid fluctuations connected with
individual particles. The relaxation times of the slow
fluctuations are mainly determined by the RC time
of the circuit; they are the ones that are found by the
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usual approximate methods. The relaxation times of the
rapid fluctuations are determined by the average time
between two successive individual electron transitions.
The two kinds of fluctuations are separated by an
accumulation point in the spectrum of relaxation times.
It seems likely that such a distinction is a general
feature of fluctuations in nonlinear systems. In linear
systems, of course, there is just one relaxation time.
The mathematical problem consists of finding the
eigenvalues and eigenfunctions of the difference equation
(1.1), together with their relevant properties. Although
the mathematics is closely related to the theory of
“g-difference equations”,'* some of the results appear
to be new and may have some interest by themselves.
As much of the mathematical work as seemed possible
has been removed from the text to a series of appendixes.

2. PRELIMINARIES
Equation (1.1) can be written more simply
dP(N)/at=(E—-1)P(N)+¢{(E1—1)e¥P(N),

where E is the operator defined by Ef(N)= f(N+1).
This can be further simplified by replacing N with a
new variable s

N=s51g,
and choosing the constant g such that {e~<*=1. Then,
dP(s)/dt=(E—1)P(s)+ (E'—1)e~P(s).  (2.1)

Unless g happens to be an integer, s runs over a set of
noninteger values. Let v denote the distance of g to the

P(N)— P(s),

c
NI
I

F1c. 1.

/

1'W. Hahn, Mathematische Nachrichten 2, 4 (1949).
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next higher integer'?:
<y<1.
Then the set of values available to s is
8y=1(--+, =24, —1+v,v, 14+, 2+v, 3+, ).

Summation over all values s&$, will be denoted by S.
One readily verifies that one solution of (2.1) is

g+~vy=integer,

Wo(s)=exp(—3es?+1es). 2.2)
For future use, we note the property
E¥,=c¢¥,. (2.3)

We introduce a Hilbert space 3¢, of real functions
¥(s) with s€S8, by defining the scalar product,

rsd) = AOZ (S).

¥, itself belongs to 3C,, the square of its norm being
S exp(—1es?+-ies)
+00
=exp(—3ev’+5ev) 2 exp[—eV2+ (F—7)eN ]

=exp(—Fer’+iev)ds(Fie(v—1)). 24
Here 953 denotes a theta function.”® The quantity (2.4)
is the partition function of the equilibrium distribution
and will be denoted by Z.

It is convenient to introduce also the dual space ¢,
consisting of the functions

o(5)=¥(5)/Tu(s), ¥()EIKy,
with the scalar product

(P1,02) = @1,¥2) =S¥ op1eps.

In particular,
‘1)0 (S) = 1

The operator on the right of (2.1) will be denoted by
F,
F=E—14(E"—1)e.

It has an eigenvalue zero with eigenfunction ¥o. We
show that it is negative definite for all other functions ¢
(i.e., in the subspace orthogonal to ¥,). By using (2.3)
and some obvious properties of the operator E, one
finds

SV WY =S¢(E—1)Vp+Se(E-1—1)e T
=SV w(E1—1)¢+S¢(E1—1)(E¥o)¢
=S¥ (E'—1)¢+So(1-E)¥E"¢

=—S¥[(1-E"¢ ] (2.5)
12 The introduction of v as distinct from g is convenient but
not strictly necessary.
13 For the theta functions, we follow the notation of E. T.
Whittaker and G. N. Watson, A Course of Modern Analysis
(Cambridge University Press, New York, 1946), Chap. 21. The
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This is clearly negative, unless ¢ is a constant and hence
proportional to &,.
We also shall have to consider the operator

F=E-1—14¢(E-1),
with the properties
S¢Fy=SyFs,
F¥op="F¢.
These relations show that F is the operator that
corresponds to F in the dual space.

The solution of the time-dependent equation (2.1)
is equivalent to solving the eigenvalue problem

F¢ == )\1#,
or alternatively,

Fo=—ro. (2.6)

We shall indeed solve this last equation, but first an
auxiliary function has to be introduced.
3. AUXILIARY FUNCTION =(2)
Definition:

w 1—eg¢k

m(z)= ]I

ko1 ] — ge(bta)
Fundamental property:

7(z)=(1—e"*)w(z—1). (3.1)

From this follows, as w(0)=1,
a(m)=J] 1—e*) for m=1,2, ---.
k=1

w(2) is periodic with period 27i/e. It has simple poles
at z=—m (m=1,2, ---), the residues being given by

(= 1)+ exp(—Fem®+-Sem)

zl_igl”‘ (stm(z)= er(m—1)

There are of course additional poles at z= —m-2mim’/ ¢,
where m'=2=1, =2, - - -. Otherwise 7 (z) is regular and
it has no zeros. For all z and all integral m,

w(z—m)w(—z—14+m)
72 (—2z—1)

= (—1)m exp[ —3em?+e(z+3)m]. (3.2)
As Re 2— o, w(2) tends to a constant G,
lim#(z)= J] (1—e)=G. (3.3)

k=1

parameter ¢ of all theta functions in this paper has the value ¢#¢
(and will, therefore, not be written explicitly). Accordingly, the
quasi-period is 37e.
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This is the same constant G that occurs in the theory
of theta functions.’®* As Rez— — o avoiding the poles,
w(2) tends to zero. More specifically, if m — o through
integral values,

(@) (—2z—1)
W(Z—M)_—E——

(=)~

Xexp[—3em*+e(z+3Hm]. (3.4)

Finally,
m(2)r(—1—2)=G/8:4(3iez+Lie).
It is convenient to define as a separate function
mi(z)=m(z+mi/e),
with the fundamental property
m1(2)= (14 )m(z—1).

#:1(z) has no singularities on the real axis. Equation
(3.3) yields

(3.5)

(3.6)

1r1(z—m)7r1(-—z— 1+m)

7l'1(Z)‘lr1(—Z—‘ 1)

=exp[ —fem*+e(z+3)m], (3.7)

while (3.4) becomes

m(z)mri(—2z—1)
m(z—my~——————
G
Xexp[—3em*+e(z+5)m]. (m— ). (3.8)
The so-called ¢-binomial coefficients*!®* can be
defined in terms of 7 (z) by

Lol
yl w(r(z—y) La—y

This is an entire analytic function of y, which equals
1 for =0, and vanishes for y=—1, —2, ---. From the

fundamental property (3.1) of =(z), the following three
identities are obtained.

(3.9)

rz] 1—ee[z—1

= [ ], (3.10)
[yl 1—evly—1
2] 1—e? [2z—1

=—-——~[ ], (3.11)
Lyl 1—eestev ] y
(2] [3—1 z—1

=[ ]+e—es+eu[ ] (3.12)
vl Ly y—1

1 C., F. Gauss, Werke II (Goéttingen, 1863) 11, in particular
p- 16.

16 G, Szegd, Orthogonal Polynomials (American Mathematical
Society, New York, 1959), p. 33.
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From (3.2) follows

[ g N Y

Xexp[3em?—e(z—y+3Hm]. (3.13)
From (3.4) one finds for m — +
[ 3 ]e (2) (— 1)
y+ml w(z—y)x(y—z—1)
Xexp[iem?—e(z—y+3m]; (3.14)
and for m — —
[ # ]&_f_(f)_(_. l)m
y+ml x(y)r(—y—1)
Xexp[3em?+e(y+3)m]. (3.15)

It is convenient to define separately
[ z] L 169) [z-l—-lri/e]
yli w(y)m(z—y) y

4. SOLUTION OF EQUATION (2.6)

In order to find solutions of the difference equation
(2.6),

0= (F4+Np={E-1—14r+e(E—1)}o,

we put

4.1)

+o
¢(S)= Z a,ectto)s,
)

a, and ¢ are yet to be determined. Clearly ¢ may be
restricted by

0<Res<1, 0<Imo< 27/e (4.2)
Furthermore, we put!®
A=1—¢*, 0KImr<2r/e (4.3)

Substituting this ¢(s) into the equation, one obtains a
two-term recursion formula for the a,,

e—er{e——e (+o—7) l}av+ee(v+u*+l) { 1 — p—€(pto+1) } @ 1= 0
This may be written in the form
w(v+a)

r(v+o+1)
r(vto—7—1)

r(v+to—7)

ay+e€("+0+f+1) ay+1= O_

It then follows immediately that

m(v+o—7—1)

— 7
w(v+o)

18 The value A=1 would have to be studied separately. How-
ever, in Sec. 8 is shown that it cannot contribute to the density
spectrum of the fluctuations.

a,=

exp[ — e’ —e(ot+r+3)v],



FLUCTUATION SPECTRUM FOR A NONLINEAR MODEL SYSTEM

with ¢ independent of ». On account of {3.2), one also has

w(r)
y=c (—1)" — e’ —2¢0v),
a=c )1r(v+cr)r(r—a—v) exp( )
=c'(—1)”[ T ]exp(—evz—-Zeav).

We thus have obtained the following general solution
of (4.1):

(0= % (—1){ " ]
y=—20 v+o

Xexp[— e*—2eav+e(v-+o)s], (4.4)

7 being related to A by (4.3). It follows from (3.3) and
(3.4) that this series converges for all ¢ and 7, unless 7
is a negative integer. If ¢ is an integer, all terms with
v<g are zero; if r—¢ is an integer, all terms with
v>T—0 are Zero.

®(s;0,7) has a number of obvious periodicity
properties with respect to ¢ and 7, but they are im-
material because of the restrictions (4.2) and (4.3).
However, there is also a quasi-periodicity in 7, which is
expressed by the following important recursion relations.
Firstly, using (3.11) one finds

w(7)
(1—eE)®(s;0,7)=—P(s;0,7—1). (4.5
w\T—
Secondly, introducing the dual function
Y (s; 0,7)=Vo(s)®(s; 0,7),
one finds with the use of (3.12)
(1—e“E)V(s;0,7)=¥(s; 0, 7+1). (4.6)

Thirdly, either by using (3.10) or by using (4.5) and
the difference equation (4.1) itself,

(1—=E)2(s; 0,7) :

= — (1= e NE(s; 0, 7= 1) (47)

5. NORMALIZATION CONDITION

In order to determine the eigenfunctions of F, those
values of ¢ and = have to be selected for which the
normalization condition

SU(s)[®(s; 0,7) P< o (5.1)

is satisfied. If o is an integer (necessarily zero), and
r=n (=0,1,2,---), the series (4.4) breaks off and
reduces to a polynomial in e*® of degree #. Hence, (5.1)
is satisfied. This gives us a first type of eigenfunctions:

P,V (s)=2(s; 0,n)
n
14

= Z; (—1)"[ }exp(—e:ﬂ-l—evs). (5.2)
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These polynomials have been studied in the mathe-
matical literature.!517

In order to find the other types of eigenfunctions, the
behavior of ®(s;o,7r) for s— = has now to be
investigated.

Behavior for s — »

If 070, the series does not break off for negative ».
Thus, for s — — =, the terms with large negative » will
predominate, so that the asymptotic expression (3.15)
may be inserted. Thus,

(s> —»;0,7)

+oo
~ 3 expl—2ert*—e(o—%—s5)v+eos].

The sum on the right is
e*d3(3ie(c—3—s)).

On account of the quasi-periodicity of the theta
function, this is equal to

e 93(3ie(c—F—s+1))ee—o

g—~y—1
=eda(ie(0—3—7)) I etometo
k=0

=dy(zie(0—3—7)) exp[zes’+ies— ey’ +ey(o—$) ]

Because of the factor exp(3es?), this asymptotic
behavior is irreconcilable with the normalization
condition (5.1), unless the theta function is zero. Hence,
1ie(c—%—1) has to coincide with one of the zeros of 3,

3te(c—3—7)= (m'+Hr+ (n'+3)(5e/2),
with any integers m, #’. The only solution within the

restriction (4.2) is
o=v+wi/e.

Behavior for s —» + «

If r—o is not an integer, the series does not break off
for v — 4. Then, for s — 4, the terms with large
positive v will predominate, so that the asymptotic
expression (3.14) may be used. Hence

q’(s - + ®© 35 077)
Foo
~ Y exp[—3e’—e(lo+7+i—s)vteos].

This can be worked out like the previous example, with
the result that the normalization condition can only be

7S, Wigert, Arkiv Mat. Astron. Fysik 17, No. 18 (1923);
G. Szegd, Sitzber. Preuss. Akad. Wiss. Physik.-Math. K. (1926)
242; L. Carlitz, Ann. Mat. Pura Appl. (4) 41, 359 (1956). Szegd’s
polynomials K,(£,9) are related to our ®,1 by

@”(1) (3) = K"(_ G"+‘, e‘-‘e)‘

It should be noted that his orthogonality relation involves an
integral, whereas our Eq. (7.5) involves a summation over §,.
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satisfied if
Yie(o-+r+h—r)= (m'+Hr+ (#"+3) (Ge/2).
This yields a denumerable set of solutions, viz.,

ot+r=n"+v+=wi/e, (B'=0,+1,+2 ---).

6. VARIOUS TYPES OF EIGENFUNCTIONS

Summarizing the results, one finds four possible sets
of values for ¢ and 7.

1) =0, 7= (®=0,1,2,--);

2) 0=0, r=nty+mi/e
(n=---,—2,—1,0,1,2, ---);

(3) e=ytmi/e, T=nty+mi/e
(n_—-...’_z’_l’o,l,z’ tflu);

4) o=vy+t+mwife, T=n

(n="'7 _27 _1’07 1: 2) )

They give rise to the following four possible types of
eigenfunctions.

First type : polynomials in e, see (5.2).
n %
®,V(5)=P(s;0,m)= 3 (—1)’[ ]exp(—evz-l-evs);
=0 Vv

AW=1—e " (2=0,1,2,---).
Second type:
3,2 (5)=®(s; 0, nt+y+wi/e)
® n+y
=3 (- 1)"[ ] exp(—e?ters); (6.1)
y=0 v 1

M@=14ecmn  (g=-.. —2 —1,0,1,2,---).
Third type:

®,®(5)=8(s; v+wi/e, n+v+wi/e)

n mi(nt+
=exp[ (ey+mi)s] 2 (— 1)”——(n v
— mi(y+v)r(n—v)

Xexp(—err—2eyv+evs); (6.2)
M@ =14ectn  (g=-.. —2 —1,0,1,2,---).

An alternative form is

®,® (s)=(—1)" exp(— en®—2eyn)
) n+y
Xexp[ (entey+mi)s] T (—1)”[ ; ]
=0 V} 1

Xexp[— e+ 2e(n+y)v—evs]. (6.3)
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Fourth type:
®, @ (s)=®(s; v+mi/e, n)
=exp[ (ey+mi)s] E (—=1) )
— mi(v+y)m(n—v—7y)

Xexp(—e?—2eyv-tevs). (6.4)

MO=1—¢ (2=0,1,2,---).

For negative # this expression is meaningless because
w(n) is infinite. We therefore define for <0

&(s;v+wife, )

$,D(s)= lim
= x()

[t s ——
— SpLieyTs ~o 1 (v+y)mi(n—v—7)

Xexp(—e?—2eyv+evs). (6.5)

MB=1—¢= (n=---,—-2,—1,0).
For n=0, either (6.4) or (6.5) may be used.

In Appendix A, it is proved that &,® for <0
vanishes identically (i.e., for all s&8,), and that &,®
for 20 is proportional to ®,®. This shows that the
eigenvalues A, for negative » are spurious. Moreover,
it is proved in Appendix B that the ®,® are propor-
tional to the ®,®. Hence, only the first two types
remain, and all eigenvalues are nondegenerate.

It still has to be verified that ®,® actually does
satisfy the normalization condition. For this, it is
sufficient to note that from (6.1) follows

$,D (s = —0)=140(e*),
and from (6.3), with the aid of (B.3),
&, (S — 4» ) =O(3¢(n+‘y)s)_

7. NORMALIZATION
In Appendix C, the following identities are proved

SV [P,V P=n(n)e"Z, (7.1)
n+vy
sw0[¢n<z>]2=i——)ewz'. (7.2)
mi\Y

Here Z is the quantity defined by (2.4) and Z’ is an
abbreviation for

Z'=8T(d,?®)2 (7.3)
which is computed in Appendix E to be
G3
Z'=exp(—ev*+1ey) : (7.4)
mi(—y—1)

It is convenient to define normalized eigenfunctions
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¥y and &, in the following way:
Yo=Z"17,,
8,0=[r(me 2,9,
Z’[m(n+7)em]‘*

H.O=—
n

VA

H,®,
1 (’Y)

The general orthonormality relation is
SYB, P, =8;Bnm. (7.5)
Accordingly, we also put
T, N=Td,®.
A special example of (7.5) is
SV, =8:18n0. (7.6)

We here mention a result, which is obtained by
similar methods in Appendix D:

S50, V= —x(n—1)Z, (n31) .7
Fy—1
Wl(” .Y )Z/I.

m(y—1)

Here Z” is a third constant defined by

Ss¥, @ = (7.8)

Z"'=Ss¥,®. (7.9)
It is shown in Appendix F that
G z
2= —exp(—}er+ien) - (7.10)

7r1(—'y)— 1—eer

It should be noted that, on account of (7.6), the relations
(7.7) and (7.8) remain valid if the factor s on the left
is replaced with N=s+g¢.

8. FLUCTUATION SPECTRUM

The spectral density of the fluctuations in the number
N of electrons is given by?

2 A
O

T AN4o?

{SNT}?, (8.1)
the summation extending over all normalized eigen-

functions ¥ with their eigenvalues A. Inserting the
results of the previous section, one gets

2 » 1—er  {r(n—1))2
Sn(w)=-
W) T g‘:l (1—e )2 +u? w(n)en

240 14et (m(nty—1))2

e (1+e—=<n+v>)2+w2{ my—1)
2w
27 mnt)

FOR A NONLINEAR MODEL SYSTEM
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or, with the aid of (3.1), (3.6), and (7.10),

2r » e *"r(n—1
sN(w>=—[z o el

wl n=1 (1—e*")2+w?

Z mly) ~ (1feemtn)ipe?

In order to compare this with the result of reference 1, one has
to replace w by e« and multiply the whole expression with e,
because of the difference in time scale. The first term then agrees
with Eq. (44) of reference 1. It involves the relaxation times

Z' €2 1w e mmy(nt+y—1) ]

€ 1
E_:Roc= ;Roc +0(e),
where RoC is the RC time of the circuit in the linear region. The
second term is new; it involves relaxation times of order
€ €Ro

TemmRiC=g7 T
The physical meaning has been discussed in the introduction,
and in reference 1. Of course, these relaxation times loose their
physical meaning when they become comparable with the time of
flight of the electrons between both electrodes.

The expansion of Sy (w) for large w is

Snlw)~(2/7w?) > AM{SN¥)?,

2 ®
z——[ e rr(n—1)
Tl =1

Z' €2 4
+— > ey (nty— 1)]. (8.2)
Z my)

It has been shown before!'* that this should be in-
dependent of the nonlinearity, which implies that the
quantity [ ] should be unity. It can readily be verified
(by comparing powers of ¢~¢ on both sides) that

i e 'r(n—1)=1—-G.

n=l

Moreover, it is shown in Appendix G that

+00
> erry(nty—1)=Ge*. (8.3)

Substituting this in (8.2) and using (2.4), (7.4), and
(3.5), one finds the desired result.

This check is important for the following reason.
Equation (8.1) has been derived for a complete set of
normalized eigenfunctions. Unfortunately, we have not
been able to prove that the set consisting of the functions
¥,V and ¥,® is complete. However, it is clear that
completeness is not actually necessary for (8.1); it is
sufficient that no eigenfunction has been skipped for
which

MSNT)2>0,

The fact that the quantity [ ] in (8.2) is actually
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unity guarantees that this condition is met. In particu-
lar, it follows that eigenfunctions belonging to A=1, if
any, cannot contribute.

APPENDIX A. PROOF THAT ®,® IS
PROPORTIONAL TO ®,0

According to (6.5) and (3.7),
exp[ (ey+i)s]

@_1(4) =
©) mi(— 1_’7)’"'1(’)’)

~}o00
XX (—1) exp[—3er’+e(s—v+5)r].

The infinite sum is
do(—3ie(s—y+5)=0.

Thus, ®_;¥=0. Moreover, the relation (4.5) when
applied to ®_,,® with m>0 takes the form

(1—emE)d_,0=&_, @,

Substituting successively m=1, 2, ---, one finds that
all®_, @ are zero. Substituting m=0, one finds

(1-E)®®=0; hence, $;®=constant.

Thus ®,“ is proportional to ®,. It then follows
immediately from (4.6) that each ®,“ for #20 is
proportional to ®,® (with the same proportionality
constant).

APPENDIX B. PROOF THAT ®,® IS
PROPORTIONAL TO @,®

First one obtains from (6.2) directly

B0 12y —5)= (= 1)@, (5)
X exp[ — e(n+y+mi/ €)s+en*+2eyn+2ey*+2miv ].

Substitute #=0, s=v,
Po® (7)=%0® (7) exp(ey*+iv).
Substitute s=vy41,
D@ (y—1)=—$¢® (y+1) exp(ey’+miv—ey).

On the other hand, from the difference equation for
& ®,

(B.1)

P (y—1)+€ % (y+1)=0.
Hence,
D)@ (y—1)=8® (y—1) exp(ey?+nivy). (B.2)

From (B.1) and (B.2) and the fact that ®,®(s) and
®¢® (s) satisfy the same difference equation (4.1), it
follows that they must be proportional to each other.
Finally, using the relations (4.5) and (4.6), one finds
generally .

®,® (5)=2,9(s) exp(ey*+miv). (B.3)
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APPENDIX C. PROOF OF THE NORMALIZATION
FORMULAS (7.1) AND (7.2)

If ¢ and 7 have such values that the norm exists, one
finds using the result (2.5)

S (s)[®(s; 0,7) P=A"1ST(s)[(1—EN)®(s; 0,7) ]2
From (4.7), this may be written

(1—e)SWo(s)eV[E2P(s;0, 7—1) %
which according to (2.3) is equal to
(1—e e S[E*¥o() [E*®(s; 0, 7—1)
=(1—e)eSV(s)[®(s; 0, 7— 1) ]2

Thus, we have obtained a recursion formula for the
norm. When applied to the ®,%, it yields

S\Il0[¢n(1)]2= (1 _e—en) (1_ w-e(n—-l)) e
X (l_e—z)eens\l,()[@(](l):]2,

which is just (7.1). When applied to $,®, it yieldsin a
similar way (7.2).

APPENDIX D. PROOF OF (7.7) AND (7.8)
We first derive a recursion formula with the aid of
(4.6).
Ss¥(s;0,7)=Ss(1—e<VE-)¥(s; 0, r—1)
=8S¥(s; 0, 7—1)(1—e"DE)s
=(1—e " D)Ss¥(s5;0, r—1)
—e ¢ LSY (s; 0, 7—1).
According to (7.6), the last term vanishes unless =1
and oc=0. By iterating this recursion formula,

Ss¥, O (s)= —n(n—1)Z,
Ss¥,® (s)/71(n+v—1)=1independent of #.

These are the relations (7.7) and (7.8), respectively.
It should be noted that these equations do not give

Ss¥®, but this quantity does not occur in the fluctua-

tion spectrum either. Actually, it is easy to compute

Ss¥o® (s)=7vZ+ (20) 195" (Fie(y—3)) exp(—Fev*+iey),
where the prime denotes differentiation with respect to
the argument of the theta function.
APPENDIX E. COMPUTATION OF 2’
In the definition (7.3) of Z’, we substitute one factor
®,» from (6.1) and the other from (6.3), using (B.3).

2'=S exp(~hest+hes)

x| £ <—1)v[7]lexp<—e»2+evs>]

x{ exp(— ey*— i) exp[(ey-Hmi)s]
Y

X é (—1)"[ ] eXP(—en2+2ew—e#S)}-

M
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Put s=v+N, so that the summation variable N takes
integral values,

7' =exp(—}er+her)

+N1
X lim Y exp(—3eN?+LeN+miN)
Ni1—w —N1
kad Y
X3 (—1)”[ ] exp(— e +eyv+evN)
y==() vh

® ¥
XX (—1)“[ ] exp(— eu*+eyu—eulV).
=0 ph

Since we have cut off the range of &, the triple sum is
absolutely convergent, and is therefore equal to

Y

= o ]lexp(—en“’-l-ew)

i
X E:o (—-1)”[7] exp(—er’+eyv)
X5 (=) expl—beNhe(r—ptHN].  (E.1)

—N

It is readily checked that for integral y—u,
4o
S (—1)¥ exp[ —31eN+4-e(y—u+3)N]=0. (E.2)

Hence, the summation over N in (E.1) may be replaced,

+N1 il —N1
To-T -1

—N1 Ny

(E.3)

We consider the contribution of the first of these two
terms to the sum (E.1).
First put N—v+u=N'in (E.1);

- i 7] exp[ —Feul+e(y—3)u]

=0 L

o [Y
x z[ ] exp[— 3o+ e(y -+ 3)v— o]
=0 1

14

X 3 (D exp[—heN+3eN’].

Ni—rt+u
The last sum clearly tends to zero as Ny — « for any

finite value of v (regardless of ). Hence, one makes no
error by using the asymptotic value (3.14),

v 1 o ert]
L]l——mexp e’ —e(y+3)v]
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Moreover, put v=N,+pu+A; the result is

__1 © %
*—z[ ] exp[— e+ e(y—F— No)u]
7|'1(—‘Y—1) w=0 Lty

X f: exp(— euX)

A=—Ni—p

X ¥ (—1)¥ exp(—3eN?+3ieV'). (E4)
N/=—\

Consider separately the terms with x> 1. Summation
by parts yields for the repeated sum over A and N

® e—ey)s

=

~Ny—p l—ge

+exp[ept(l\f'd—ll-):l i (=)

1—e =

(—1)* exp(—3et—3e))

Nitutl
Xexp(—3eN?+3eN'). (E.5)

The second term, when inserted in the sum over u, gives

_rise to a sum which in absolute value is less than

i [‘y] exp[ —feu?+e(y—3)u]

=1 Ly 1—ee

Xexp[—3e(Ni+u+1)43e(Niut1)1.

Obviously, this vanishes in the limit Ny—— o. The
first term in (E.5) is majorized by

Y expl—betur—te(tu)]

1—e¢—Ni—n
Xexp(3eu?+3en) <const. exp(Teu+Few).
When inserted in the sum (E.4), the result is less than
< |7
z exp[ — ew*+e(y—N1)u]— 0.
=t Lyl

Hence, only the term with u=0 survives in the limit
N1 — . Its value is found from (E.4)
—1 ® o
lim Y X (—1) exp(—3eN24+3eN').

m(—y—1) ¥ S

Again, summing by parts, one finds for the sum

= 3 (N (=)0 expl—3eh+1)—e(h+1)]

—N1

+ 3 (= 1)¥ exp(—LeN"+-3eN).
N1
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The last term vanishes in the limit and so does

@

(V=1 X

—Ni+1

(=1 exp(—3en—3en)
—M
= (=1 T (~1) exp(—}ev—3eN)

[using the identity (E.2) for y—u= —17. The remaining
term is

+o0
— T M= 1) exp(—ent—1e)
= — (2i) 10/ (ie) = — G

The second term in (E.3) may be shown, in a very
similar way, to vanish. Thus, collecting results, one

finds (7.4).
APPENDIX F. COMPUTATION OF 2"
According to the definition (7.9) and (7.6),

~+o0
2= (v+N)¥ @ (y+N)
+oo
=exp(—ey:—miv) 3 N¥P,®.
Hence, Z" exp(3ey*—1Ley) is equal to

o0

2 (—=1)¥N exp(—}eN*+3eN)
N=—w
Y

X g (—1)”[ ] exp(— er?*+eyr— evN).

14

If N is cut off at the lower end, the summations may be
interchanged so that one gets

lim Zw: (—-1)”[7] exp(—er*+eyv)

Ni——0 v

X 2 (—1¥N exp(—3eN*+-2eN—evN). (F.1)

—N1

It can be shown, by methods similar to those in
Appendix E, that

—N1—1

lim i e Y =0,
N1—=0 »=0) N=—w
Hence, in (F.1) one may simply replace N with «, so
that the summation over N becomes
+oo
2 (=1)¥N exp[—3eN*—e(v—3)N]
= (20)784 Gie(v—1))
= (2 (— 1) exp(Ger*— Fen)d4/ (Yie)
=(—1)"TexpGe—ier)G .

vaN KAMPEN

It remains to evaluate the sum

00

Oi=3 [z]l exp[—3e’+e(v—)v].

y={)
We shall first show
1 o 1
Qo=—2% ——exp[—}e’+e(y—3)v]. (F.2)
G=r(y

Define for p=0,1, 2, - --
0= [“:P | ep—torter—ps1
1
By use of (3.12), one finds the recurrence relation
Qp=(1=€"")0p1.
From this follows by iteration
Qo=0y/7(p).

Hence, it suffices to find Q, for p — . For fixed »,,

0= +¥ +3. (F.3)
)

y=0 vi+1

For the second term, one has

£ mi(y+p) -
X —Llagtte(y—1
v+l rl(’Y+P_V)1r(y) EXP[ ZEV e('y 2),,]
< const. Zp: exp[—Lert+e(y—3)v],

vi+l ( y)

0
1
Lconst. X exp(—3e?).
i+l

The third term in (F.3) approaches, for large p,

- - -1 2+ 1
pZ:'lrl('Y'{"P—V) exp[ —fer*+e(y—13)v]

—Lep?+e(v—13 o
=Gexp[ P2 +e(v—3)p] 2 (e 19)
m(y)m(—y—1) =

Xexp(— epr—ev),

which obviously vanishes as p— . The first term,
for p— oo, is

v1 1
> exp[—je*+e(y—3)v].
=0 (¥

Now let »; also go to infinity ; the result is (F.2).
In order to evaluate the series (F.2), define

v 1
Ry= ¥ — exp[—}ert+ely—Bv—epv]

v=01(p
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so that Ro=GQ,. With the aid of (3.1), one finds the
recurrence relation

Ry=exp(—ey+ep)(Rp1—R,).
From this follows by iteration
Ro=m1(p—7)/m(—7).

As R.=1, one finally has Ry=G/mi(—1). On collecting
results, one finds (7.10).

APPENDIX G. COMPUTATION OF
T

P(z)=X e-m(z4+n—1)
Define

+o0
P,=3 e*rrp(ztn—p).

Inserting for w(z-+#n—p) the identity (3.1), one finds the
recurrence relation

Pp=e¢ PP ,—e PP .,
From this follows by iteration
m(p—1)
Py= (— 1y ———
T(p+r—1)
Xexp[fer'+e(p—s—3)r1Ppir. (G.1)

Hence, it suffices to find the asymptotic value of P, for
large .
For this purpose, write

Py=exp (=) & w(e+n) exp(—epr)

—ep(—e ¥ +3 ).

—n1+l  —
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The first term is in absolute value not greater than

exp(—ep*+emp) T [w(z+n)| exp(—en)
—n1+l
=0(exp[—ep*]) for fixed ;.
In the second term, the asymptotic value (3.4) for

m(z+n) may be used because 1, may be chosen arbi-
trarily large.

—nl

exp(—ep?) ; w(z+n) exp(—enp)

(@) (—z—1)
~vexp(— ept)—————

—n1

X % (— 1 expl—ent—e(p++2)n]

EMZ(A)%(%@H“)

Xexp[ —3ep*+ep(z+1) .
On account of (3.5),

P~ (—1)7G* exp[ —3ep*+ep(s+3) ]
By inserting this result in (G.1) for P,;., one obtains
Py=(—1)Pr(p—1)G exp[ — sep*+ep(z+3) ]

In particular for p=1,
P(z)=—Ge.

On substituting z=vy-+mi/¢, one obtains (8.3).
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The ground-state wave function and some of the excited states of the BCS reduced Hamiltonian are
found. In the limit of large volume, the boundary and continuity conditions on the exact wave function
lead directly to the equations which Bardeen, Cooper, and Schrieffer found by a variational technique.
It is also shown in what sense the BCS trial wave function may be considered asymptotically exact in this
limit. Finite-volume corrections are included in an appendix, and explicit calculations are carried out for
a one-step model of the kinetic energy which has possible applications to the problem of the finite nucleus.

I. INTRODUCTION

E wish to find the ground-state wave function
and some of the elementary excited states of

H=Y e(k,s)Cis*Crs—v 3 3, Cet*C_y*CsCirr. (1)

k.8 k k'=k

The operators C and C* are the usual Fermi operators
and anti-commute. The sums are restricted to an
immediate neighborhood of the Fermi surface, which
includes 4# distinct states of momentum (k) and spin
(s=% or }), and which are populated by 2 electrons.
In other words, our eigenfunctions must be simul-
taneously eigenfunctions of the number operator 5

1=2_ Cu,s*C., 2)
k,s

with eigenvalue 2.

Our Hamiltonian is the famous “reduced Hamilton-
ian”’ of the BCS theory; and for an introduction to the
present work, we refer the reader to Sec. II of the
BCS paper.! In their notation, n=N(0)hw, where
N(0)=density of states at the Fermi surface and
fuw=typical phonon energy. As has been stated, we
wish to investigate the nature of the exact solutions
to this problem, and we shall see that they are very
similar to what BCS found by a variational calculation.

For the purposes of finding the ground state, it is
convenient to think in terms of a pseudo-Hamiltonian
H which has the same ground state as (1). First, by
time-reversal symmetry, we may assume that e(%,1)
=e(—4,4). Second, it is clear that, in the ground state,
all electrons must be paired, as in Cpt*C_z1¥*, because
unpaired electrons do not benefit from the attractive
interaction. Following BCS, then, we define

W¥=Cpt*C_ri®, br=C_11Cs, (3)

and consequently, the ground state of the pseudo-
Hamiltonian

H= 2 Z ekbk*bk—-'v Z Z bk*bk’ (4)

k K=k
coincides with the ground state of H. [We have set
&= e(k,4).] Indeed, every eigenstate of H is a state of

1J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

H, but the converse is not true. The b; operators have
mixed commutation properties and may not be re-
garded as Bosons for which the diagonalization of (4)
would be trivial. In fact, they are a set of Pauli
operators.!

A complete set of states for our problem consists of
all possible configurations of # pairs, of which a typical
member is

¢=[ II 5*]/0) )

EE (R}

where {&}; is a set of » different &’s chosen from the
2n permissible values. There are (2n)!/ (n!)22222/ (7n)}
different ¢;’s. For comparison, the totality of con-
figurations (allowing an arbitrary occupation number)
is 22, For every ¢; there is a corresponding amplitude,
which we may write as fi=f[S(k1)- - -S(k2.)], where
S(k;)=1 or 0 according to whether k; is in the set
{k}: or not. It is to be understood that f is not defined
for all possible values of its arguments (of which there
are 2*) but only for those values such that X_; S(k;)=mn.
The general eigenfunction of H is therefore

=2 fidi (6)

config.

The problem now consists of finding the ground-state
amplitudes f; and the corresponding energy. For some
insight into the general problem, we first turn to the
strong-coupling limit which is well understood.

II. STRONG-COUPLING LIMIT?

We set =0, and the Hamiltonian is simply

Hoo=—v2 2 b )

k k'#k

As this is purely attractive, we may safely assume that
the ground-state wave function possesses all the
symmetry of the Hamiltonian. The outstanding sym-
metry property is invariance under the interchange of
any two momenta k and &’. Therefore, one may pre-

2The strong-coupling limit is generally well understood. An
exhaustive treatment of this limit, including a perturbation-
theoretic approach to weak coupling, is given by Wada and
Fukuda, Progr. Theoret. Phys. (Kyoto) 22, 775 (1959).
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sume that
S -S®) - SE) - )=f(---SE)---S®)- ), (&)

ie., that f is a symmetric function of its arguments.
Now we make use of the property that S(k)=0 or 1,
which is expressible as

S(k)=S2(k). )

Consequently,® the most general function which obeys
Eq. (8) can be written as

J(S(k1)-- 'S(kzn))=f(2;, SE)N=7(n). (10)
But as » is a constant, f must be constant and hence
all amplitudes are equal in the strong-coupling ground
state. We can check this directly:

(—vZk:kék b*bir)-f(n) XTI 6*[0)

i kS {k)i

= Eo f) S TI0%10), (1)

with f(n)=n!(2n!)"4=22-"(xn)? for normalization. This
is the Schrodinger equation, and each complexion is
connected to #? other complexions. Therefore,

(12)

a well-known result. It may be useful to recall that #
and v~ are both proportional to the volume (for fixed
density), so that E is an extensive property of the
system. Eq. (12) is in perfect agreement with the
BCS result taken in the strong-coupling limit, but is
in slight disagreement with the calculation of Wada
and Fukuda,? who include a diagonal term —v > ;%
in their interaction. There is no particular significance
in their discrepancy.

By o= —on?

III. ONE-STEP MODEL

The number of sign changes (or nodes) in the
amplitudes f is a good quantum number, and by the
adiabatic theorem, its value persists as e, is changed
from a constant value to some arbitrary function. We
make use of this to solve for the ground state of a
model which is not quite so trivial as the strong-
coupling limit, and which may be of interest in the
nuclear problem where energy levels are discrete. We
shall assume that ¢, is a step function—zero over half
of the states and equal to a positive constant (e) over
the remaining states.

The ground-state amplitudes must be nodeless
functions which are symmetric under the interchange
of any two pairs within the same half-space. Let the
occupation numbers over each half-space be,

m= 2. Sr and n= Y S (13)
k such that k such that
& =0 €& =€

3 This theorem was kindly pointed out to us by Dr. D. Jepsen
and Dr. T. D. Schultz of this laboratory.
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We can eliminate #9 by the relation

n=no+n.=const, (14)

and therefore the ground-state amplitudes are a
function of #n. alone, and are denoted f(n.). The
equations for the amplitudes are simply

[2en.— E—2vn.(n—n.)1f(n.)
=v(n—n)Y (nt+1)+wmdf(n.—1), (15)

where 7. assumes integer values from zero to a maxi-
mum of n. These equations are easily soluble when #
is.a small integer. For example, if n=1, there are only
two amplitudes, f(0) and f(1), and the eigenvalue
equation is the usual determinantal condition

—E -9
Det =0, (16)
—y 2¢—E
which has the solutions
E, =et(e+2)h (17)

The lower of these E_ is the ground-state energy and
belongs to the nodeless solution f(1)/f(0)>0, as
expected.

For large », the determinantal equation is impractical,
and we now use a method for isolating the ground-state
energy from all the other solutions in the limit of large
volume, # — «. Corrections in the form of an expansion
in %! are discussed in the Appendix, and may be of
value already for #> 3, when the determinantal method
is cumbersome.

Because the amplitudes can be chosen real and

positive in the ground state, we write
f(n)=consterS®, (18)

where x=n./n, and S is a real function. Next, we
divide both sides of Eq. (15) by #f(#.) and find

2ex—W—22x(1—x)

=M (1—2)p(x+1/n)+2*/p(x)], (19)

where
p(x)=exp{n[S(x)—S(x—1/n)1}, (20)
W=E/n, and A=wmn. (21)

The variable x goes from 0 to 1 in steps of 1/#. One
can now proceed to the limit »— o, but first one
notes that

lim exp{n[.S(x+1/m)—5(x)]}
= lim exp{+n[S(x)—S(x—1/n)]}
=exp[a/0xS(x)],

provided S(x) is a sufficiently smooth function.
Therefore, to order 1/# if S(x) is sufficiently smooth,
p(x)=p[x+ (1/n)], and Eq. (19) turns into an algebraic

(22)
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equation
2ex—W—=2x(1—2) =M (1—x)p(x)++*/p(x)}, (23)

which is subject to the requirement that p(x) be real,
positive, and continuous. The conjecture that S(x)
approaches a continuous limit function as #— o,
which implies that p(x)=p(x+1/%) and satisfies Eq.
(23), which in turn implies that S(x) has a limit
function is certainly self-consistent. But it need not
be true. Equation (19) is a nonlinear difference equation,
and in order to get from the point x=0 to the point
x=1/4 say, we must iterate it #/4 times. The assertion
that p(x+1/#%) may be replaced by p(x) will result in
an error of order 1/#. But since it takes #/4 steps to
get to x=1/4, we may accumulate an error or order 1,
in which case p(1/4) will not satisfy Eq. (23). Once
p(x) ceases to satisfy the quadratic equation, we see
from Eq. (19) that p(x) will oscillate wildly. In the
Appendix we prove that the errors do not in fact
accumulate in the regions (0m) and (n,1) where m
and # are the least and greatest points, respectively, at
which the discriminant of Eq. (23) vanishes. For the
ground state, the discriminant vanishes at only one
point and, hence, in this case, our smoothness assump-
tion is justified everywhere except in a small neighbor-
hood about the vanishing point. There are three critical
points: at x=0 and 1, and at the turning point where
the discriminant vanishes.

The “boundary conditions” are as follows: at x=0,

pO0)=—W/A, (24)

which follows from Egq. (19) at x=0. Obviously, W
will have to be negative or zero. At x=1,

p(1)=N/(Q2e=W), (25)

which follows from Eq. (19) at x=1. At intermediate
points, the quadratic equation possesses two solutions

2ex—W—2x(1—x)
pw)= M(1—z)?

Ry e

The boundary conditions impose the positive root
near x=0 and the negative root near x=1. Therefore,
at one intermediate point, the discriminant must
vanish so that the transition from positive to negative
root may be continuous. The reality condition is
translated into the requirement that the discriminant
have a minimum at this ‘“turning point” where it
vanishes. Thus, simultaneously, we require

2eh—W—22h(1—h)\?
o[ () e
N(1—h,)

) he
P € _l—h:

(27)

D. MATTIS AND E. LEIB

where x=1%. is the turning point (by analogy with the
BCS notation) and

oD
—| =0. (28)
0% |he
It does not follow, however, that
dp(x) dys x dp(x)
P =— ——) and indeed
dx r=h¢ dxe\1—x x=he, dx

is discontinuous at the point x= k., although it always
remains finite. Equations (27) and (28) possess a
solution provided A>¢/2,

T Ly _1m/n )
‘“E( 5{) g ‘)_1+e/2>\’

and

=—A1—¢/(2N)T (30)

Recalling that A=wn and E=#W, we find for the
ground energy in the one-step model:

€

2(vn)

Eo.s.= - (vn) (n) (1_ )2’ for (1’”)22 (31)

For (m)=A<%e, the turning point sticks at %.=0,
and one finds that only the negative solution is required
for reality and continuity, provided W=0. Therefore,

E,s=0 for (m)<}e (32)
Had we used the BCS trial function, the results would
have been identical. As we shall see in Secs. IV and V,
this is no coincidence, even though the BCS trial
function is not an eigenfunction and does not conserve
particles. It may also be easily verified that these
results agree with the strong-coupling theory if we
set e=0, even as to the constancy of the amplitudes
f(n.) in that limit. For the excited states, we turn back
to the Hamiltonian in its original form given in Eq. (1).
The low-lying excited states are relatively easy to
find in the one-step model. We break up a pair, putting
one electron in an =0 state, and the other in an
ex=¢ state. There are (n—1) remaining pairs for
which (z—1) =0 states are accessible, and an equal
number of ¢,= ¢ states. The energy of the “singles” is

E singles=0-+}e=e¢, (33)

and the lowest possible energy for the remaining pairs
is [substituting (#z—1) for # in our previous result ]

ED=— (v)(n— 1)2[1——6—] , (39
20(n—1)

provided v(z—1)>%e, and zero otherwise. Thus, the
excitation energy A associated with such excited states
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is (calculated to leading order in the volume)
A=E singles+E" D —E®™=2(vn), if (vn)>%e, (35)

and

A=¢, if (mn)<ie (36)
It is interesting to note from Eq. (35) that unless
exceeds a critical value, this energy of excitation is
independent of ¢, hence, is the same as for the strong-
coupling limit. This shows an amazing rigidity in the
ground-state wave function.

IV. SOLUTION FOR ARBITRARY FUNCTION &

Proceeding with a knowledge of the one-step model,
we can now derive the BCS equations for an arbitrary
function ¢. We do this by approximating e, as closely
as we please by a staircase function. If we call the
number of states in the step about some discrete ¢, N,
then as # — o, N.— . Thus, no matter how “fine”
the staircase, each step will always have an infinite
number of states associated with it. The limit to a
continuous function e(k) is taken after the limit » — o,
but always the number of steps on the staircase is
regarded as large. We shall assume that e varies from
a minimum value Erp—%w to a maximum of Ep-+fuw,
where Er is the unperturbed Fermi leve] and 7w is the
energy of the typical phonons responsible for the
attractive interaction . We define the population of
the portion of phase space belonging to ¢ in a given
complexion by

> Sk

k such that
& =¢

(37

Ne=

As before, n. can vary by integer steps from zero to a
maximum value N.. If we denote a sum over distinct
energy shells, (i.e., a sum over the steps in the staircase)
by the usual summation symbol with superscript e, we
recall that

S ene=n, (38)
and
e No=2m, (39)
The algebraic equations for the amplitudes are
[2 ZE Gne—E—v Ze ne(Ne—'ne)]f(' IR (A .)
=V Y ey e* (Ne—nJne
XF(- o (et 1) -~ (mo—1)---).  (40)
We let
FC et o )= exprS (- e - -xee--), (41)

where x.=n./N. and again divide both sides of the
equation by the amplitude f(--“#¢-:-%e---). One

defines
. JC D )
o F(mer M)

(42)
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from which it follows that in the limit # — o,
pee=1/pe e, e#€. (43)

Once again we have assumed that p.. approaches a
continuous limit function. If we extend this definition
to include the special case € =¢, pe,e= (pe,o) =1, then
in our limit, Eq. (40) simplifies to
2Y ¢« Nex.—E
=30 2N, Y Ne

X{(1—xe)x¢'Pe.c’+(1_x€')x5/P¢v"}' (44)
Each ., is required to be real and continuous in the
ground state, with respect to variations in any of the

independent variables x., or of the parameters € and €.
For example, we must find

and Pe,e”Pe”,e’=Pe,e’;

lim p,, =1,

e’=¢

(45)

but these conditions will be trivially satisfied by our
solution. To investigate the continuity with respect to
the independent variables, we isolate an arbitrary
term on the right-hand side of Eq. (44), and combine
all the other terms with the left-hand side. Thus,

a=Bpe,e+ (v/pe.e); (46)
where
a=2Y < Nex.—E—3vY " N> ¢ N
(l_xul)xn
X { (l_xn)xn/Pé”'em_I_______ ,
P(,,,EI’
# (e,¢)
(G”,em) (46a)
¢ (E"e)’
B=30NNe(1—x)xe, (46b)
and
y=NN(1—xc)xe. (46¢)
The “boundary conditions” are
pee=a/B when =0, 47)
pe.e=v/a when =0, (48)
whereas the general solution is
a a\? v
pe,e’=_—:h[(__) —'_] . (49)
28 28 B8

Continuity might require that at some point p. . have
a cusp. That is, the discriminant must vanish at some
point, and

a=2(8v)% (30)
The reality condition requires that
;] a\? ¥
Y@ o
atl\28 B
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where ¢ is representative of any variable in the problem.
This is already quite similar to the one-step problem,
and suggestive of the BCS equations, but the derivation
is not yet complete. Anyhow, for each pair (e,€’), there
exists a value of z. and x. (which we shall denote 4.
and %.) for which

a ('Y H (1-;7'5’)}3; 3
e () -()
26 )6 (l—he)he’
by Eqgs. (49) and (50). At this point, Eq. (44) reads

E=2Y¢N.eh.
— 03 NS¢ No[hdhe(1—h)(A—ho) . (53)

We also investigate Eq. (44) in the neighborhood of
this point. Let #n. =N . hetdn, ne=Neg h—on, and
all other occupations remain fixed. For infinitesimal
én, one finds a differential equation, which after some
simplification reduces to

(52)

?
26—— Zen ZVEN Zeul Are"'
2

Pt o0 | ze=he

N.dx.
(A—r")
e
—oN (1—2h )= const.

[ G 1

e, et

._vze” Nw[ —-k"}be,e"’f‘

€' 'ske
(54)

In general, we don’t know the value of d/dx (perr o),
not even at the point in question. However, it is
finite, and by Eq. (52), its coefficient vanishes.

1—-2k,
2
Eke(l_kf):}%
X3¢ No[ho(1=ho) Pr=const. (55)

Following BCS, this is solved by defining the gap
parameter e

=7 Ze" Ne"[ke”(l_ke”)]y (56)
from which it follows that
he=3[1—¢&/(&+e)t], (87

where &=¢—3 const. To determine this constant, we
refer back to Egs. (38) and (39) which, upon being
combined, yield the condition

S N&/(B+e?i=0. (58)

It is easy to see that this constant is the chemical
potential for a pair 2u, which is conventionally deter-
mined by the condition that the total number of
particles be fixed, as here. If N, is approximately a
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constant function of ¢, then Eq. (58) can be written as

Ep-tdie H
f de—=0,
Br—ka  (2Fed)}

and it is seen that u is independent of & and is equal
to its unperturbed value which we denote by Ep.
Otherwise, one defines

(59)

¢(e)=Ne¢/Ny,, (60)
and Eq. (58) becomes
Epthw -
f de()—————=0. (61)
EF ke (€2+€02)*

This is an implicit equation for the chemical potential
and, in general, g can be a function of €.

The ground-state energy is simply obtained by
substituting the values of %, determined by Eqs. (57)
and (58) into Eq. (53), as in reference 1.

This concludes our derivation of the equations of
superconductivity based on an analysis of the properties
of the exact eigenfunction of the reduced Hamiltonian
(1). In the following section, we conclude our verifica-
tion of the BCS theory by showing that the point
{x.}={h} is a stationary point, in the sense that as
n— o, the contribution of the various configurations
to the wave function becomes essentially a delta
function centered about this point, and that, therefore,
the BCS trial function (or any other trial function
which is correct in the neighborhood of this point)
becomes asymptotically exact in this limit, and not
just the variational energy.

V. THE STATIONARY POINT

In the limit of infinite volume, only certain con-
figurations contribute significantly to the wave-function
normalization integral, and also in the calculation of
matrix elements to the low-lying excited states. We
have seen that the BCS equations are exact in the
neighborhood of a certain point in occupation-number-
space. We shall now show that this is also the stationary
point, and that the BCS wave function correctly
weights the relative amplitudes of different con-
figurations in the neighborhood of this point, provided
care is exercised in conserving particles.

We investigate the one-step model,* for which the
wave-function normalization requires

- ]fo’(m)- (62)

» [ n!
net Lac ! (m—m,)!

The first factor is the number of ways we can have the
occupation number #., i.e., the number of distinct
configurations belonging to the same value of #.. In

4 The generalization to the model of Sec. IV would be repetitious
and will be omitted.
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the limit #— o, both this factor and f?(n,.) are very
rapidly varying functions of #., and most of the
contribution comes from a neighborhood of the point
where the summand has a maximum. (The sum could
be replaced by an integral at this point and evaluated
by the method of steepest descents.)

Let the stationary point be at 7., and let us factor
from the sum the value of the summand at this point.

(0 Y sy,
ne'(n ")’ (ne+1)2 f2(ﬁe) ,(”'—ﬁe+1)
fz(ﬁt— 1)_L(n_ﬁ€)2(n“'ﬁt"' 1>2f2(ﬁe+2)

AR (ARAGEA2?E (A
A (fie~1)? f2(ﬁe——2)+'”). -
(n—n A1 (n—n 42 iAo

In our limit,

nlf(7o)

1= (o) (5o

T2 1 1 (1—15)44_.
+(1—£¢)2p2(5:¢) O(n)+ zl 7

1 z& 1 1
o)

nl (1~ p*(Ze) n
To order 1/z, all the terms in the neighborhood of
Z.=17./n must contribute equally, therefore,

PE)=72/(1—%). (65)

However, comparing this with Eq. (27), we see that
(66)

Te=he,

and indeed the stationary point is the same as the
turning point at which the discriminant of Sec. III
vanished. As this is the only point of interest in the
calculation of the normalization integral (and of low-
lying matrix elements), we must verify that the trial
function has the right amplitudes at and near this
point.
The BCS function is

1/f=l;I([1*h(ek)]*-f—[h(%)]*bk*) [0), (67

and is evidently normalized. For the one-step model
" (&=0 or €, k. is the same as in our Eq. (29), and
ho=1—h. Decomposing the function (67) into con-
figurations of distinct #o and 7., we find that the trial
amplitudes do correctly depend only on these parame-
ters, but that
(68)

so that the trial function does not conserve pairs, as

n0+ﬂe5£”,
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has already been noted. For any fixed value of n+n.,
the ratio of the trial amplitude for the configuration
(no+ne) to the trial amplitude corresponding to
(not-g, ne—q) is

BCS ratio of amplitudes= (k/[1—k])%,

and is correct for any finite positive or negative integer
g (in the limit » — o). Moreover, the average value of
no+n. in the trial function is #; therefore, such quanti-
ties as the energy, which are insensitive to the exact
number of particles, can be accurately computed with
the trial function, as we have already discovered in
the preceding sections. This ratio is incorrect for very
large values of such that ¢/#30, except in strong-
coupling, where the ratio is correctly given as unity
for all ¢. This suggests that the trial function (or the
equivalent Bogoliubov transformation) be handled
with some care; but because it is correct at the station-
ary point, this function does asymptotically, and on
the average, approach the exact eigenfunction of the
problem as #— <. Many investigators have already
shown that the variational ground-state energy of the
reduced Hamiltonian is exact in an asymptotic sense, 57
but as the variational theorem does not imply an
equivalent accuracy in the wave function, the present
analysis has not been in any sense redundant.

(69)

APPENDIX

This section is rather mathematical and concerns the
intrinsic error in approximating the nonlinear difference
equation for the # functions by a quadratic equation
such as (23) or (46). Once we establish that the error
is of order #n!, we can calculate this error to leading
order to see the effect of finite-volume corrections on
the theory.

The error analysis proceeds in several steps. We
shall show that:

(a) p(x) approaches a limit function as # — « and
that this limit function obeys the correct boundary
conditions provided the discriminant vanishes at least
at one point in the interval (0,1).

(b) The lowest energy is such that the discriminant
vanishes only at one point, the “critical point.”

(c) The limit function which p(x) approaches is the
solution to the quadratic equation, except in the
neighborhood of the critical point.

Let the primitive equation be (for simplicity, we
depart slightly from the notation in the text)

a@pNply+1/n)—26()p(y)+c()=0,
0<y<1, (A1)

where this equation holds for all y=integer/# in the

interval; and let g(y) be the solution to the quadratic

5 P. W. Anderson, Phys, Rev. 112, 1900 (1958).

6 J. Bardeen and G. Rickayzen, Phys Rev. 118, 936 (1960).

7 N. N. Bogoliubov, D. N. Zubarev, and Yu. A. Tserkovnikov,
Soviet Phys.-]ETP 12, 88 (1960).
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equation
a()g*(y)—2b(y)g(¥)+c(y)=0.

The coefficients have the properties, ¢(0)=a(1)=0,
b(»)#=0. First, we show that if y, and y; are, respec-
tively, the least and the greatest points at which the
discriminant D(y) vanishes,

D=p—ac=0,

(A.2)

(A3)

then p(y) approaches a continuous limit function as
#—> o, in the regions (0,y,) and (y1,1). The proof for
the first region is as follows: let

gly+1/n)=g(y)+ (1/n)Q(y),

=g+ 1/n)S). (A.5)

If we choose the correct solution to (A.2) in this

region, namely,
b(y)+[D(y)

)=,
i a(y)

(A4)
and

(A.6)

it can be directly verified that S(y) is of order unity in
the immediate neighborhood of the point y=0. We
must now show that this function remains finite on
the interval (0,y,). The function 2(y) can be obviously
calculated and is of order unity if we exclude a neighbor-
hood of the point ¥,. It is also of order unity in that
neighborhood if

F
—D
dy

=0 (as in the ground state).
y=y0

Now, we calculate p(y+1/#) by two different methods.
Using Eqgs. (A.4) and (A.5),

p(y+1/m) =g+ 1/nQM)+Sy+1/n)], (A7)
and using the primitive equation
1y 20(y) <)
+-)= - A8
() woner O

Eliminating p(y) by Eq. (A.5), we also assume that
S(9) is of order unity, and, therefore,

1y 26(y) c(¥)
p(r+-)=—=-
() 2) eI+ SO/ g6)]
(y)S(y)
=g+ A9
B 7 (g () (n2) (4.9
Comparing Eqs. (A.7) and (A.9), we find
Sy+1/n)=M)Sy)—2' (), (A.10)

where

c(y)

O<M(y)=——-—
T YET

<1 for y<y, (A.11a)
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and

Q' (y)=Q(y)+order 1/n. (A.11b)

This difference equation is far simpler than the original
equation (A.1). Now, we want to show that S(y+1/#x)
is finite. An upper limit to S is S,

S(y+1/n)=M ()8(y)+w,

where w=Max|Q'(y)|, and is known to be finite. The
solution to this equation is

(A.12)

S(y+1/n)
=w(1+M(y)+M )M (y—1/n)
+M M (y—1/m)M (y—2/n)+---), (A.13)

and if M (y) is the maximum value of M in (0,y),
S(y+1/m)<w/1—M(y), (A.14)

and is always finite for y<yo.

A similar proof goes through for the other interval,
except that one chooses the other root of the quadratic
equation to make p and g agree at y=1.

Now, if we use the fact that b(y) decreases mono-
tonically with the energy eigenvalue, then we see that,
if the energy is too low, the discriminant can never
vanish in (0,1); and both boundary conditions cannot
be obeyed by a continuous function [which we have
shown p(y) to be]. The lowest value of the energy for
which D(y)=0 in the interval is such that yo=494,
i.e., the discriminant vanishes only at one point. Then
we have shown that as #— .

b(y)+[D(y) ]t
P(y)=g(y)=—y——[—y—] y<yo, (A.15)
a(y)
and
b(y)—[D(y) ]t
P(y)=g(y)=—M y>v. (A.16)

a(y)

Our analysis does not include the immediate neighbor-
hood of y,. If one wished, he could investigate this
critical region (which would involve an analysis similar
to that of the WKB approximation at a turning point),
and would undoubtedly find that a limit function does
not exist here. But as this region can be chosen as
small as we please, there is no real point to such an
analysis. Nevertheless, we should satisfy ourselves that
nothing untoward happens in this region, namely,
that our assumption is justified that the lowest energy
is that which gives one critical point. As we have
mentioned, below this energy there is no solution
(to order 1/n) and, hence, our assumption yields a
lower bound; but it agrees asymptotically with the
BCS wvariational solution, which is an upper bound.
Hence, it is correct asymptotically, and it must indeed
be possible to continue our solution for p(x) through
the critical region.
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Finally, we should like to calculate the lowest-order
correction to the energy. We recall

P(y)=expg”[5(y)_5(y_i)]l

aS 19
— exp(-.—-—__-—}— e )y
9y 2n 3y?

and

o 2)-eolfo(r22) s

as 185
=exp -+~—~——-—+---).
dy 2n 0y
Define

expdS/dy=g(y)=¢(y), (A.18)

and to order %72,
(1625) (131 ()) (A19)
exp{ —— }=exp{ ——In , 19
2n 3y* P 2n 8y 8

where g(y) is given in Eqgs. (A.15) and (A.16).
With these substitutions, the primitive equation

609

becomes

13
(a exp[i—; 5 lng(y)])gz (3)—2b2(y)

+ (c exp{— i Ing(y)]) ~0, (A.20)

and if we note that both e and ¢ are proportioned to
the interaction v, we see that the interactions off the
energy shell have been increased from a strength » to
an effective strength

19 190
=y exp[z—ng1ng(y)]=v[1+é;3—lng(y)], (A.21)
y

which is greater than v because, in the important
region near Yo,

(d/dy) Ing(y)>0, y=yo. (A.22)

Consequently, the ground-state energy divided by the
number of particles actually must increase as the
volume is decreased (always at fixed density). For
n>>1, this correction is quite negligible, and it always
vanishes in the strong-coupling limit (in which g(v)=1,
8/3y[Ing(y)1=0). In the weak-coupling limit, or for
the one-step model, this correction has the effect of
slightly increasing the critical temperature for very
small volume crystals.
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I. INTRODUCTION

ECENTLY Domb! has drawn attention to the
problem of determining the distribution of cluster

sizes for particles distributed in a medium in accordance
with a statistical law. In the simplest case, the particles
occupy at random the sites of a lattice (or, more

1 C, Domb, Conference on “Fluctuation phenomena and sto-
chastic processes” at Birkbeck College, London, March 1959;
Nature 184, 509 (1959).

generally, the vertices of a linear graph). Each site can
accommodate one (and only one) particle and is
occupied with a constant probability p. A group of
particles which can be linked together by nearest-
neighbor bonds from one occupied lattice site to an
adjacent occupied site are said to form a cluster. The
main theoretical task is to evaluate the mean cluster
size and higher moments of the distribution as functions
of the density (or concentration) of the particles, this
being measured by the probability p.
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The problem has applications in various physical
contexts, the distribution of grain size in sands and in
photographic emulsions,? the behavior of dilute ferro-
magnets®* and other diluted cooperative assemblies, the
vulcanization of rubber and the formation of crosslinked
polymer gels,’ the clustering of impurities and defects
in crystals, etc.

An alternative version of the problem is to consider
the occupation of the bonds of a lattice (or linear
graph). Each bond can be occupied with probability p;
occupied bonds which meet at a lattice site are con-
sidered as linked together in a cluster. In this form, the
cluster size problem is very closely related to the per-
colation processes introduced by Broadbent and Ham-
mersley®? and since discussed by Hammersley®® and
Harris.'® In fact, if for “occupied” one reads “open” and
for “unoccupied” reads “closed,” a lattice with particles
distributed on bonds becomes a randomly dammed maze
such as considered by Broadbent and Hammersley. The
flow of fluid through such a maze constitutes a perco-
lation process and serves as a model for the diffusion of
gas molecules through a porous solid, the spread of
disease in an orchard, etc.® Interest centers on deter-
mining the subsequent distribution of fluid and the
number of wetted “atoms” (i.e., sites). Clearly, a
similar transposition can be made when sites rather
than bonds are occupied. We shall refer to the two

versions of the general problem as the site problem and -

the bond problem, respectively.

One of the interesting features of these problems is
the existence of a critical probability p. above which
unbounded clusters of infinite size are formed in the
lattice with a definite density. This phenomenon has
significant physical implications. Thus, in a dilute fer-
romagnetic system, p. represents the minimum concen-
tration of ferromagnetic atoms necessary before long-
range order can set in, and so marks the limit of the
cooperative phase transition.®* When p=p, the ferro-
magnetic Curie point occurs at zero temperature. When
considering the gelation of polymers, p. is proportional
to the minimum number of crosslinks per molecule
needed to ensure gel formation. The probability of a
particle belonging to an infinite cluster then measures
the gel fraction of polymer in relation to the sol fraction
(finite clusters). For percolation processes, the forma-
tion of infinite clusters implies that the medium attains

2F. Kottler, J. Franklin Inst. 250, 339, 419 (1950); J. Phys.
Chem. 56, 442 (1952).
193 (Iliéssgajto, A. Arrott, and R. Kikuchi, J. Phys. Chem. Solids 10,

4R. J. Elliott, B. R, Heap, D. J. Morgan, and G. S. Rushbrooke,
Phys. Rev. Letters 5, 366 (1960).

5P, J. Flory, Principles of Polymer Chemistry (Cornell Univer-
sity Press, Ithaca, New York, 1953), Chap. 9.

8S. R. Broadbent and J. M. Hammersley, Proc. Cambridge
Phil. Soc. 53, 629 (1957).

7 J. M. Hammersley, Proc. Cambridge Phil. Soc. 53, 642 (1957).

8 J. M. Hammersley, Ann. Math. Stat. 28, 790 (1957).

¢ J. M. Hammersley, Proc. 87th Intern. Collog., “Probabilités et
ses Applications” (Paris, 1959), p. 17.

1 T, E. Harris, Proc, Cambridge Phil. Soc. 56, 13 (1960).
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a finite (nonzero) permeabillty so that fluid will per-
colate indefinitely away from a source instead of being
confined to the local neighborhood of the source. If the
probability of cross infection in the spread of a disease
exceeds the critical value, an epidemic occurs.

Bounds to the critical probability for various lattices
have been obtained by Hammersley™® and Harris,?
but Domb has shown how $, can be estimated directly
from knowledge of the cluster size distributions.! For
most physical applications, furthermore, it is useful to
have more detailed information on the size distribution.
In particular, the mean cluster size and the density of
infinite clusters are expected to exhibit singularities at
p=p. and consequently the behavior in the critical
region is of considerable interest. Progress in the solu-
tion of these problems can be made by studying series
expansions based on the enumeration of lattice con-
figurations.! Unfortunately for the lattices of principal
interest, the standard plane and three-dimensional
lattices, it seems to be rather difficult to formulate a
direct theoretical approach leading to solutions in closed
form. Appreciable insight can be obtained, however, by
examining pseudolattices such as the Bethe lattices
(i.e., infinite homogeneous Cayley trees) and, for ex-
ample, the various (triangular) cacs illustrated in Fig.
1.

As we show in this note, the cluster size problem can
be solved exactly and in full detail for a wide class of
pseudolattices of this general type. The relation be-
tween the behavior of these pseudolattices and that
of the normal space lattices is quite closely analogous
to that between the results of approximations like that
of Bethe and of Rushbrooke and Scoins and the con-
sequences of the exact treatment of order-disorder phe-
nomena on the corresponding lattices. Furthermore, the
exact results for the Bethe lattices are useful in obtain-
ing the series expansions for the normal lattices since
only relatively few configurational corrections have to
be made.*® One might also hope, by examining the form
of the exact solutions for various pseudolattices which
allow only a limited number of closed configurations
(subgraphs), to discover a general development analo-
gous to that of Yvon for the order-disorder problem.™
As yet, however, we have not been able to achieve this.

The theory for pseudolattices is developed in the
remainder of this paper. The general approach via
generating functions is outlined in Sec. II. In the fol-
lowing section, the generating functions for the Bethe
lattices are derived. Some of these results have been
obtained previously in the special context of polymer
gelation by Flory,® and the theory is related to known
results in the theory of branching processes (multi-
plicative or cascade processes). In Sec. IV, the gener-

11 C, Domb, Advances in Phys. 9 (1960), see pp. 283-284.

12F, Harary and G. E. Uhlenbeck, Proc. Natl. Acad. Sci. U. S.
39, 315 (1953).

13 M. F. Sykes (private communication, to be published).

1T, E. Harris, Ann. Math. Stat. 19, 474 (1948).
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F16. 1. Various simple pseudolattices: (a) Bethe lattice of
coordination number ¢-4-1=4, (b) simple (triangular) cactus of
coordination number 4, (c) expanded cactus of coordination
number 3.

ating functions are inverted to yield explicit formulas
for the number of Cayley trees on a Bethe lattice and
hence, for the other configurational coefficients. We then
show how the generating functions can be modified to
cover the “decoration” of each bond of a Bethe lattice
by an arbitrary finite ‘“bond-graph.” In Sec. VI a
similar procedure is carried through for the case where,
in addition, the sites of a Bethe lattice (of coordination
number ¢+1=23) are also replaced by a specified “site-

graph.” This enables us, for example, to give explicit

expressions for the mean cluster size and density of
infinite clusters for the bond and site problems on the
triangular cacti shown in Fig. 1. Other transformations
and the possibility of generalizing the site decoration
theory to o> 3 are discussed in Secs. VII and VIIL. The
variation of the mean cluster size and other properties
in the critical region are found to have the same analytic
form for all lattices derived from the Bethe lattice,
although the standard plane and three-dimensional
lattices are expected to exhibit singularities of a different
type.
II. GENERATING FUNCTIONS

Following Domb,! we approach the site problem on a
general lattice by asking for the probability that a
given site chosen at random is occupied by a particle
belonging to a cluster of exactly s particles. For ex-
ample, the probability of a given site belonging to a
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one cluster (isolated particle) is the probability that the
chosen site is occupied times the probability that all
the nearest-neighbor sites are unoccupied. For a lattice
of coordination number o1, this is just p;=pg°H
where ¢g=1-—p. More generally, if a,; is the number of
distinct clusters of size s and perimeler t which contain
the given lattice site (the perimeter being the minimum
number of unoccupied sites required to isolate the
cluster), then the probability of a site belonging to such

a cluster is
Pat=aetpsqt- (1)

Complete information on the cluster size distribution
is thus contained in the generating function

A (x7y) = Zs,t Qs zx‘y‘, (2)

where the sum is over all possible clusters of finite size
and perimeter that can occur on the lattice. In par-
ticular, the total probability that a site belongs to a

finite cluster is
F(p)=A(p,9)-

For small enough p, infinite clusters will be absent and
F(p) is merely the probability that the @ site is occupied.
Consequently, we obtain the basic identity

F(p)=A(p,9)=p for p<p.. 3)

On the other hand, for particle densities greater than
the critical density, infinite clusters will spread through
the lattice and the probability that a site belongs to an
infinite cluster will be

R(p)=p—A(p,9)- 4

The vanishing of R(p) defines the critical probability ..
The mean size density of clusters at a site is defined by

(8)=2s,15pss, (5)

(s)=[%0A4/3% }sep,ymq- (6)

This relation holds for all p, but above p. it represents
the mean size of finite clusters only. Accordingly, it is
convenient to normalize (s) by dividing by the prob-
ability F(p) that a site belongs to a finite cluster.
[Below p. this is just equal to p, but above p. one must
use A(p,q).] Thus,

and so

S(p)="[x(3/0x) InA (%,9) Jeep.v=0> (M
which for p<p. reduces simply to
S(p)= [04/0%)empyma (P<P0). (8)

The mean cluster size will exhibit a sharp maximum
at p=p. and this may be used to define the critical
point. For all the pseudolattices which are soluble, the
maximum in S(p) is an infinite singularity and most
probably this is generally true.

Higher moments of the cluster size distribution can
be calculated by further differentiation of A4 (x,y) with
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respect to x. Differentiation with respect to y yields
moments of the perimeter distribution. Individual
cluster contributions may be found by picking out the
coefficients of the appropriate powers of x and y.

We remark parenthetically that .S(p) represents a
“weight average” rather than a “number average,” i.e.,
if there are #, clusters of size s in the lattice, then
S(p)=2_ s(sn.)/ 2 sn,. For some purposes the number
average size So(p)=2_ sn,/> n, may be of interest.
This can be calculated from So(p) =[x(8/8x) InK (x,y)]
with x=p and y=g, where K (x,y) is defined below. For
pseudolattices it is found that So(p) remains finite and
continuous at p= p, but has a sharp peak as a result of
a discontinuous change in the sign of the gradient.

For theoretical purposes, the configurational gener-
ating function

K(x,y)=23s.: ksextyt ©
is more convenient than 4 (x,y). This may be defined by
kst= ast/s (10)

so that
A(x,y)=2(8/0%)K (x,y). (11)

Alternatively, the coefficient k;; is defined as the
number of cluster configurations of size s and perimeter
t per site of the lattice. For a finite Jattice of NV sites,
this is the total number of distinct clusters of a given
type that can be placed on the lattice divided by the
number of sites. In general, this will depend on N, but
for any uniform d-dimensional lattice edge effects fall
off relatively as N~/ so that for large IV, k,; becomes a
lattice constant’! independent of N. In a similar fashion,
one may define the number of configurations per bond.
If we indicate lattice constants with respect to sites by
a superscript .S and with respect to bonds by a super-
script B, it is clear that

kS=f5k2, (12)
where fS is the number of bonds per site. Since ¢4-1
bonds radiate from each site and each bond is associated
with two sites this is just fS=%(c+1). Other trans-
formation formulas may be written down in the same
way.

The Bethe lattices and similar pseudolattices may be
regarded as lattices of infinite dimension since in a
finite Bethe lattice the relative number of sites in the
edge is of order 1( = N-1/*). Consequently, the previous
definition of a lattice constant breaks down. The
definition may be extended in an unambiguous fashion,
however, by introducing a convergence factor. If I is
the least number of lattice steps from the origin to a
characteristic point in an individual configuration, the
factor e7#! is included in the sums for the total number
of configurations and total number of sites (or bonds).
These sums then define analytic functions of 8, but
after taking ratios to evaluate the lattice constant, 8
may be equated to zero. The lattice constants so defined
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have just the same transformation properties as on
normal lattices.

The analysis of this section has been in terms of the
site problem, but the only changes required for the
bond problem is the use of lattice constants per bond
rather than per site.

III. BETHE LATTICES
A. Bond Problem

Consider now the bond problem on the simple Bethe
lattice of coordination number ¢-+1 as illustrated in
Fig. 1(a). We observe that the perimeter of a cluster of
s occupied bonds is given uniquely by

t=(o—1)s+o+1. (13)

This follows by noting that the perimeter of a single
bond is 2¢, and that whenever a new bond is added to
a cluster, one bond of the original perimeter is lost but
o new unoccupied bonds must be added to form the new
perimeter. It follows that the configurational generating
function (9) is

KB (x’y) — ya’+1 Z ngsy(’_l)s, (14)
8=0

where b,=£%s,(;—1)s+0+1 is the total number of s clusters
(of bonds) per bond of the Bethe lattice. To simplify
the analysis of the site problem, we have included a
coefficient b equal to the number of sites per bond. Its
presence in (14) has no effect on the density of infinite
clusters or on the other properties considered. The ex-
pression (14) may be rewritten in terms of the funda-
mental Bethe lattice generating function

B.,(Z)=§ Bz (15)
as
KB(x,y)=y"t'B,(Z), (16)
where
Z(x,y)=xy"L. 17)

To calculate B, (z) explicitly, we use the fundamental
identity (3), namely,

Fp)=A(p.=p (p<p.).

Now
A(x,y)=xy*B,(2), (18)
where the prime denotes differentiation with respect to
Z. Thus, if
z=2(p)=Z(p,)=p(1—p)"7, (19)
the generating function must satisfy
B/[a(p)]=G(p)=(1—p) (20)

for small enough p. Now B,(2) is a function only of z,
but z is defined by (19) as a function of p for all .
To a given value of z, however, correspond #wo values
of p, one of which tends to zero with z while the other
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tends to unity. Consequently, if we define p*(p) to be
the root of the equation

p*(1—p*) =p(1—p) =2 (21

which vanishes continuously with z (and hence as
p— 0 and as p — 1), we may rewrite (20) as

G(p)=[1—p*(p) I (22)

In this form the result is thus valid for all , and so the
probability of a site belonging to a finite cluster is

F(p)=p(1—p)*G(p)=pL(1—p)*/ (A—p*)].

Now z, as a function of p, attains a simple maximum
at pn=1/0, which implies that the root of (22) which
vanishes with z when p<pn, is simply p*=p. For
p> pm, however, z decreases again to zero so this root
is no longer valid. Consequently, from (23) we have

F(p)=p forp L1/0,
#p for p>1/0.

(23)

(24)

As explained in the previous section, this establishes
that the critical probability is

The correctness of this result is easily verified by
regarding the buildup of a cluster on the Bethe lattice
as a branching or cascade process. If the cluster is to
spread indefinitely, the expected number of occupied
bonds leaving from one end of a given occupied bond
must not be less than unity. Conversely, if the expected
number exceeds unity an infinite cluster will be formed.
Since the probability of traversing a bond is p and ¢
independent bonds proceed onwards from a given bond,
the critical condition is p.os=1 in agreement with (25).

For the complete Bethe generating function, one
derives from (20)-(22) the equation

dBo/dZ=[1—-X(Z) ], (26)
where X (Z)=X(x,y) is the root of
X(1—X)'=Z=xy, 27

which vanishes with Z. [Note that X (p,q)=72*(p).]
This may be integrated to yield

1 [2-(c+1)X(2)]
o+1 [1—X(2))+ '

and with (16) this formally solves the problem.
From (23), the density of infinite clusters is

R(p)=p{1-[(1—p)/(1—=p") F}
=p{1=(p*/p)le/ =11}, (29)

while by differentiating (26) one finds for the mean
cluster size

S(p)=(1+0p*)/(1—ap®).

B.(2)=

(28)

(30)
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As already noted, Eq. (21) for p*(p) shows that p*=p
for p<1/0. At p=p, the gradient of p*(p) changes
sign discontinuously, but the magnitude remains
unchanged. Thereafter, p*(p) decreases monotonically
and vanishes at p=1 as (1—p)°".. Near p. one has

P*(p) =p.—p—p.| (p~=po), (31)

so that the mean cluster size becomes hyperbolically

infinite as
S(p)=2/|1=(p/p)| (p=2po), (32)

and the density of infinite clusters vanishes linearly as

R(p)~[40/(e—1)(p—pc) (p—p+). (33)

After removal of the root p*=p, Eq. (21) is of degree
oc—1 and so for the first few values of o (i.e., small
coordination numbers) it may be solved in closed form.
One finds

(a) =1 (linear chain) p.=1.

p*(p)=p, R(p)=0 (all p), (34a)

S(p)=01+p)/(1—p), (34b)

Bi(z)=1/(1—2). (34c¢)
(b) =2, p.=1,

p*p)=1—-p (p>3), (352)

R(p)=p—p~*(1—p)* (p>3), (35b)

S(p)=1/|p—3|-1, (35¢)

By(z)=${[14+3(1—42)¥]/[1+ (1—42)* I'}. (35d)
(c) o=3, p.=3,

p*p)=1-3p—[p(1—2p) 1} (#>3), (36b)
R(p)=p—p[1—3p—p*(1—3p) T
(»>3%). (360)

The typical behavior of the density of infinite clusters,
etc., can be seen from Figs. 2 and 3 which refer to the
Bethe lattice of coordination number four (¢=23).

B. Site Problem

To solve the site problem for the Bethe lattices, it is
sufficient to note that the configurations involved are
essentially identical with those required for the bond
problem. In fact, a one-one correspondence can be set
up which is described by

kS, i=3(o+1)kB, 1, (37)

It follows immediately that the configurational gener-
ating function for the site problem is
K3(x,y) =3 (o+ Dy B, Z(x,y) ]. (38)

The Bethe function B,(Z) is defined as before by (28),
(27), and (15) and, clearly, it determines the critical
point and the nature of the critical singularities. These
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Fic. 2. Cluster distributions for the o=3 Bethe lattice: (a)
probability of a bond belonging to a cluster of one bond, (b) to a
cluster of one or two bonds, (c) F(#) the density of finite clusters,
(d) R(p) the density of infinite clusters. (Note the incomplete
range of p.)

must, therefore, resemble those for the bond problem.
Explicitly, the density of finite clusters is given by

F(p)=p*(1—p)*/ 1—p*) (39)
in place of (23), and the mean size by
S()=Q1+p*)/(1—0p"), (40)

which exhibits directly the unchanged position of the
critical point.

IV. CONFIGURATIONAL COEFFICIENTS

By the previous analysis, the coefficients in the
expansions of the various generating functions for the
Bethe lattices may all be expressed in terms of the coef-
ficients b,(¢) defined in Eqgs. (14) and (15). An explicit
expression for these is most readlly obtained from (26)
which may be written

3 shi(e)si=[1-X (],

- X(1—X)o =3 1)
By Cauchy’s theorem, one then has
1 z-%dz
sbs (a)—z—m ——[1—X(z):|2“’ (42)

where the contour of integration is a small closed loop
encircling the origin. Near the origin, the analytic
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behavior of X is the same as 3 so that (42) may be
transformed to an integral in the X plane, namely,

1 (1—eX)dX
sba(o)=— f .
i Xe(1— X) D ot

This can be evaluated directly with the aid of the bi-
nomial theorem yielding

()= 26 (s+1)e—1]! , (44)
=D I[(s+1)e—s+1]!

which expresses the total number of distinct Cayley
trees of s branches passing through a specified bond of
a Bethe lattice of coordination number ¢+41.!5 From
(44), one obtains for the number of trees per bond

ost+o+1 )
(s+1)(as+a+1)( s )

which remains valid for s=0.

(43)

be(o)=

V. BOND DECORATION

We consider now a class of lattices which can be
derived from a Bethe lattice by replacing each bond by
a replica of a given finite graph of sites and bonds,
the bond grapk. The simplest example of such a decorated
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Fie. 3. Variation of S(p) the mean cluster size density (for
finite bond clusters): (a) for the o =23 Bethe lattice (solid curve),
(b) fo)r the triangular cactus of same coordination number (broken
curve

15 This expression for the number of Cayley trees on a Bethe
lattice was originally conjectured by Dr. M. F. Sykes (private
communication).
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(b)
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F1G. 4. Decorated Bethe lattices (a) and (c) derived from the
o-——d 2(£ethe lattice by replacing bonds by the bond graphs (b)
an .

lattice is that shown in Fig. 4(a) which represents a
Bethe lattice of coordination number 3 with an extra
site on each bond. The bond graph in this case is simply
three sites connected by two bonds [ Fig. 4(b)]. A more
complicated example derived from the same Bethe
lattice is shown in Fig. 4(c). Its bond graph is a square
with one diagonal [Fig. 4(d)]. To simplify the general
treatment, we will consider only bond graphs which are
symmetric with regard to the two terminals or points of
attachment [indicated in Figs. 4(b) and 4(d) by solid
circles] and that the probability of occupation is the
same for all bonds (or sites). Both these restrictions
are quite easy to remove. -

To construct the configurational generating function
for a decorated lattice (from which all its properties
may be deduced), we set up a one-many correspondence
between configurations on the original (undecorated)
Bethe lattice and those on the decorated lattice. Con-
sider a specified bond graph in the decorated lattice,
some bonds of which are connected in a cluster of
occupied bonds (or sites). If it is possible to cross from
one terminal of the bond graph to the other by a con-
nected sequence of occupied bonds (or sites), then the
bond graph is to be identified with the corresponding
occupied bond on the original Bethe lattice. If, on the
other hand, it is not possible to cross the bond graph
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(or it only contains unoccupied perimeter bonds or
sites), then it should be identified with an unaccupied
perimeter bond on the original lattice. On this basis, we
define three bond generating functions, namely (for the
bond problem),

C(x,y)=2s.t5a,tx8y', (46)

where ¢,,. is the number of distinct connected con-
figurations of s occupied bonds and ¢ perimeter bonds
on the bond graph which join one terminal to the other;

d(xyy)=28,td8,tx8yty (47)

where d, ; is the number of distinct connected con-
figurations of s occupied bonds and ¢ perimeter bonds
on the bond graph which are connected to one (specified)
terminal but not to the other, including the case in
which one terminal is joined only to unoccupied perim-
eter bonds;

e(x’y) = Zs, t€s, txsytr (48)

where e,,: is the number of distinct connected con-
figurations of s occupied bonds and ¢ perimeter bonds
on the bond graphs which are not connected to either
terminal.

By way of example, the bond generating functions
for the two decorated lattices of Fig. 4 are

c(ry)=a% d(xy)=zy+y, elxy)=0, (49)
and
c(x,y) = 2%+ Saty+ 8ady?+2u%93,
d(x,y) =2*y*+-32°y*+2xy°+ 57, (50)

e(x,y)=xy",

respectively.

From the definition of ¢(x,y), it follows that c(p,q)
is the probability of reaching one terminal of the bond
graph starting from the other terminal. Conversely,
d(p,q) is the probability of failing to reach the other
terminal from one terminal. Consequently, the identity

c(p,0)+d(p,g)=1 (51)

is always valid and ¢(p,¢) is a monotonically increasing
function of p.

The configurational generating function for the
decorated lattice (indicated by a star) can now be
derived by making the transformation x — x*=¢(x,y),
y— y*=d(x,y), and adding a correction for the clusters
which do not span a bond graph. Thus, per bond of the
decorated lattice,

K*B(x,y)=gs K3 c(x,y),d(x,y) ]+ g57"e(x,y),

where gp is the number of bonds in the bond graph. By
(16), we have the explicit result

K*B(x,y)=gp'[d(x,9) "' B, [ Z* (x,y)]+gs”e(x,y),(53

(52)

where

Z*(2,y) = c(x,y)[d (x,y) ] (54)
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These relations solve the bond problem for any bond-
decorated Bethe lattice.

By (53), the critical singularities are determined
entirely by the Bethe function B,(Z*). It is not imme-
diately apparent, however, that the behavior in the
critical region need resemble that for the original lattice.
Nevertheless, it follows (51) that Z*(p,q) has a simple
maximum as a function of p of magnitude ¢=?(¢—1)"!
which is exactly the value at which B,(Z) becomes
nonanalytic. Consequently, the critical point of a
decorated lattice is determined by

(poge)=1/0, (55)

and the critical singularities of R(p), S(p), and other
variables do have the same functional forms as those
for the simple Bethe lattices [ compare with Egs. (32)
and (33)]. In view of the probabilistic meaning of
‘¢(p,q), the critical equation (55) can also be derived
directly by viewing the formation of an infinite cluster
as a branching process as in Sec. II.

The site problem on a bond-decorated lattice may be
solved in a similar fashion by modifying the definitions
of the bond generating functions ¢(x,y), d(x,y), and
e(x,y) so as to refer to sites of the bond graph in place
of bonds. In the definition of ¢(x,y) and d(x,y), it must
also be assumed that the first terminal site is already
occupied but no factor x should be included for it. As
an example, the bond functions for the site problem on
the two lattices of Fig. 4 are

cxy)=2%, d(xy)=xy+y, e(x,y)=0, (56)
and
c(x,y)=x%+2a%,
d(x,y)=ay+2xy’+9%, (57)

e(x,y) =ay*+ 22",

respectively. Equation (51) remains valid in all cases.
The configurational generating function per site of
the site-decorated lattice is then

a+1
(o+1)gs—20
X {2[d(x,9) 1 B.[Z*(x,y) ]+e(x,y)}, (58)

where Z*(x,y) is defined by (54), and g is the number
of sites of the bond graph (including the terminal sites).
The nature of the critical singularities is unchanged and
the critical probability is still determined by (553).

K*S(x,y)=

VI. SITE DECORATION

In this section, we endeavor to find generating
functions for lattices derived from Bethe lattices by
decorating the sites as well as the bonds. Each site of
the underlying Bethe lattice will be replaced by a
replica of a given site graph which we take to be sym-
metric under interchange of its ¢+4-1 distinct terminals
(points of attachment). Initially, we consider only the
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first nontrivial case in which the undecorated lattice is
a Bethe lattice of coordination number three (i.e.,
o0=2). The simplest example of such a lattice is the
infinite cactus illustrated in Fig. 1(b) in which the
site graph is a triangle and the bond graph is merely a
single site. The ‘“expanded cactus” of Fig. 1(c) is
obtained when the bond graph is left as a single bond.
More generally, the triangles may be replaced by any
finite symmetric three-terminal graph.

As before, we aim to solve the problem by setting
up a many-one correspondence between configurations
on the decorated lattice and those on the original Bethe
lattice. In analogy with the three bond generating
functions defined in (46)—(48), we thus introduce four
site generating functions which, for the bond problem,
are

t(x)y)=zs,t Tatxsyty (59)

where T, is the number of distinct connected con-
figurations of s occupied bonds and ¢ unoccupied perim-
eter bonds on the site graph in which all three terminals
are connected together;

u(x)y)=Zs.t Ustxsyt, (60)

where U, is the number of configurations on the site
graph in which the first terminal is connected to the
second terminal but #ot to the third;

'U(x;y)=z.v,t Vexyt, (61)

where V., is the number of configurations in which the
first terminal is connected to neither of the other two
terminals (including the configuration of unoccupied
perimeter bonds attached to the first terminal); and,
finally,

w(x7y)=Zs,t Wstqut; (62)

where W, is the number of configurations connected
to none of the three terminals. For the triangular site
graphs of Figs. 1(b) and 1(c), one has simply

t=2343x%y, u=zxy’, v=13% w=0, (63)
while for the relevant bond graphs
c=1, d=0, =0, (64a)
and
c=x, d=y, =0, (64b)
respectively.

By these definitions, £(p,g) is the probability of being
able to reach the second and third terminal from the
first terminal, #(p,q) is the probability that the second
terminal only is accessible, and v(p,q) is the probability
that the site graph cannot be crossed at all. Conse-
quently, in analogy with (51), the identity

H(p,9)+2u(p,g)+o(pg) =1

always holds.

In terms of these site generating functions, we may
set up a correspondence with configurations on the
undecorated Bethe lattice by identifying the decorated

(65)
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configurations included in #(x,y) with a Bethe lattice
at which three occupied bonds meet (a triple poins),
those included in #(x,y) with a site at which only two
occupied bonds meet (double point), and those in v(x,y)
with a site attached to only one occupied bond (single
point). The problem may then be solved if we can
determine the multivariable generating function

H@up'c)= 3 hapyturv'c?,

Auvy

(66)

where ¢, u, v/, and ¢ are regarded simply as generating
symbols and where %y, is the number of distinct cluster
configurations per bond of a Bethe lattice of coor-
dination number three with A triple points, u double
points, » single points, and a total of ¥+» occupied
bonds (with v nonnegative). In terms of this function,
the configurational generating function per bond of the
decorated lattice is given by

IK*2(2,y) =H{i(x,y), u(x,y), c(x,y)v(x,y)+d(,y), c(x,y)}
+e(xy)lo(xy) FHd(wy)v(x,y) +elxy)+3w(xry), (67)

where [ is the number of bonds of the decorated lattice
per bond of the original lattice. If gp is the number of
bonds in the bond graph and jg the number in the site
graph, one has

(68)

The replacement of v in (66) by cv+d in (67) allows
for the two possibilities: (a) the cluster on the decorated
lattice extends across the bond graph leading to the
single site graph and has perimeter bonds in the site
graph, (b) the cluster on the decorated lattice does not
reach across the bond graph so that its (local) perimeter
lies entirely in the bond graph. The four end terms in
(67) enumerate the small clusters which extend no
further than across one bond graph.

To enumerate the cluster configurations %,., (on the
=2 Bethe lattice), consider first those configurations
with no triple points. These are just linear chains of
bonds and double points, and their contribution to the
generating function is simply (y2>0)

v 2uv'+ v - 2uc- 2uv’ o (2uc)2uv’+ - - -
=2uv"?/ (1—2uc).

I=gp+3%7s.

(69)

The configurations containing triple points may be
enumerated by setting up a many-one correspondence
with the standard cluster configurations on the lattice.
These latter are described by the configurational
generating function

KB(x,y)=y*Ba(xy) = 3y*+ay'+ 2%+ -, (70)

where the successive terms correspond to a single site
with three unoccupied perimeter bonds, two sites con-
nected by an occupied bond and four unoccupied
perimeter bonds, three sites connected by two bonds,
etc. Each site in one of these configurations may now be
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identified with a triple point of the 4y, configurations.
Each occupied bond x must then be identified with a
linear chain of bonds and double points leading from
one triple point to another, while each perimeter bond
y corresponds to a linear chain leading from a triple
point and terminating in a single point. The generating
functions for these chains are

c+c 2uc+cQuc)*+- - - =c¢/(1—2uc) (71)

(72)

respectively. By combining (69), (71), and (72) and
remembering that each configuration has one more site
than it has occupied bonds, we obtain

H(u',c)=tK8[tc/(1—2uc), v’/ (1— 2uc)]
+2uv'?/ (1—2uc).

and
o'+ 2uc-v'+ Quc)w'+ - - - =o'/ (1—2uc),

(73)

Consequently, by (67) and (70), the configurational
generating function per bond for a site and bond
decorated lattice is finally given in explicit terms by

t{cv+d)? tc(cv+d)y 2u(cv+d)?

LR

(1—2uc)® L(1—2uc)? 1—2uc
+ov(cv+-d)+etw,

where ¢, d, e, 1, #, v, and w are defined as functions of
x and y by (46)-(48) and (59)-(62).

From this result, it follows as before that the critical
point and singularities are determined only by the
Bethe function. In view of the identities (51) and (65)
which hold when x=» and y=g¢, the argument of B,
in (74) can be written

T
Z = -
P4 1—2uc 1—2uc ,:p,,,:q’

and so exhibits a maximum as a function of p of mag-
nitude Z,,=%=z,.. Consequently, the critical equation is

2u(p,)c(p,9)+2t(p,q)c(p,9)=1, (75)

and the analytic forms of the mean cluster size and
other properties in the critical region are the same as
for the original Bethe lattice.

The critical equation (75) can be derived directly
from the branching process viewpoint by calculating
the expected number of paths reaching from one ter-
minal of a site graph through the following bonds to the
nearer terminals of the next site graphs. By the prob-
abilistic interpretation of ¢, #, and ¢, this is just the
left-hand side of (75). (The first term comes from the
two cases in which only one through route is open, while
the second term represents the cases in which both
further terminals are accessible.)

For the normal and expanded cacti of Fig. 1, one
obtains with (63) and (64) the critical equations and
critical points:

IK*B(x,y)=

(714)
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Triangular cactus (bond problem)

1—2p—2p*+2p3=0, $,=0.403032,  (76)
Expanded cactus (bond problem)
1— 22— 2p+2p4=0, $,=0.637278.  (77)

These critical probabilities should be compared with
the results for the Bethe lattices of the same coordina-
tion number, namely, (c+1=4) $.=0.333333 and
(e+1=3) p,=0.500000, respectively. As might be
expected, the critical probability increases with the
increasing connectivity of the lattice. (A similar phe-
nomenon occurs in order-disorder lattice statistics where
the increasing connectivity lowers the critical temper-
ature below the Bethe approximation value.) We
mention in passing the critical equation

1—2p—2p2—2p3+3p*=0, (18)

which may be derived for the simplest square Husimi
tree!? which also has coordination number o41=4. The
corresponding critical point is

Square Husimi tree {bond problem)

$.=0.353933, 79

which lies between the Bethe lattice and cactus results
because of the low connectivity of a square compared
with a triangle.

Explicit expressions for the mean cluster size, etc.,
may be derived by differentiating (74). As an example,
we quote the results for the simple cactus (bond
problem) :

2(1—-p)*(1+p—1)

Rp=p——— o @220 (80)
_— 3 5
I
4+410g+ 11+ 14¢°— 3¢*— 20°+8¢
T 2(1g— ) (1+29) (1— 42+ 2¢)
(3250, (81)

The behavior of the cluster size is compared with that
for the Bethe lattice of coordination in Fig. 3. As p
tends to unity S(p), the mean size of finite clusters on
the cactus, approaches the value 2, whereas on the
Bethe lattice S(p) approaches 1. The reason for this
difference arises from the existence on the cactus of
two distinct clusters of minimum perimeter: the single
bond and the triangle of three bonds. (Only the former,
of course, occurs on the Bethe lattice.) In the limit
p—1, these clusters dominate and appear equally
frequently.

FISHER AND ]J.

W. ESSAM

VII. BOND-TO-SITE TRANSFORMATION

The site problem on a Bethe lattice with decorated
sites and bonds may be solved explicitly for the case
o=2 by modifying the definitions of the site generating
functions (59)-(62) along the lines used to redefine the
bond generating functions (see last two paragraphs of
Sec. V). The argument then proceeds in parallel with
that for the bond problem although the details differ
slightly. The results will not be presented here, but it
is worth noting that the site problem on the cacti of
Figs. 1(b) and 1(c) can be solved immediately without
further theoretical development.

To see this, consider a configuration of sites on the
simple cactus of Fig. 1(b). Any such configuration can
be put in direct one-one correspondence with a con-
figuration of bonds on the underlying simple Bethe
lattice of coordination number three. Each site on the
cactus corresponds to the underlying bond on the Bethe
lattice. Neighboring sites correspond to neighboring
bonds. Consequently, the configurational generating
function

xyi+ 2ty (14/3)ay -

per site or per bond, respectively, is the same for both
problems. The critical probabilities are, therefore, iden-
tical as are all other properties.

Clearly this dond-to-site transformation can be applied
to any suitably related pair of lattices. Thus, the
expanded cactus of Fig. 1(c) can be derived from the
decorated (s=2) Bethe lattice shown in Fig. 4(a) by
identifying bonds on the decorated lattice with sites of
the expanded cactus. Hence, the site problem on the
expanded cactus is identical with the bond problem on
the decorated Bethe lattice. By Eqgs. (49) and (55),
the critical probability for the two problems is p.=2"%.

In the same way, the bond problem on the plane
honeycomb lattice, coordination number three, is iso-
morphic with the site problem on the plane kagomé
lattice, coordination number four (reference 11, p. 187).
At present, however, neither of these problems is
soluble in closed form.

VIII. FURTHER GENERALIZATION

The multivariable generating function H(¢,u,v,c)
defined in (66) enumerates on the ¢=2 Bethe lattice
configurations with a specified number of triple points,
double points, single points, and bonds. Now, since the
coordination number is 3, each triple point is associated
with »ne unoccupied perimeter bonds, each double point
is associated with one unoccupied bond, and each single
point with fwo unoccupied bonds (and oze occupied
bond). Accordingly, if the substitutions t=1, u#=3y,
v'=x3?% and c=x are made, the generating function
H(tu,v,c) will merely classify cluster configurations by
the total numbers of the internal bonds and of the
perimeter bonds. But thisis just what the configurational
generating function for the simple problem does. In
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other words,
KB (x)y) = H(lyy,xy27x) +%y3+xy4’

where the last two terms account for the single site and
single bond which are not included in H. If this ex-
pression is combined with (73), one obtains

(82)

v tcv" tc
H(l,u,v’,c)=tH( 1, , : )
1—2uc (1—2uc)® 1—2uc

2 v’ 2uv'?
- + . (83
3 (1—2uc)® (1=2uc)® (1—2uc)
and
xy? 2xyt
K25 = K2 ) +a (39)
1—-2xy 1—-2xy] 1—2xy

The first relation re-expresses H (f,u,9',c) in a reduced
form independent of its first argument. If we set =1,
(83) reduces to a functional equation for H (1,u,v',c)
which is equivalent to the functional relation (84) for
K3(x,y). By Eq. (20), this may also be transformed
into a functional equation for B,(z), namely,

PAd 22 4 2
Bao)= 32[ ]+ +o (@)
(1—-22 L(1—2z21 1-23 3

This equation does not seem easy to solve directly in
closed form although it defines B,(z) uniquely for small
z as may be seen by assuming the power series expansion
for Bs(z) and determining successive coefficients by
comparing like powers of 2. It is easily verified, however,
that the correct solution is provided by (35d).

When one attempts to generalize the foregoing
approach to the site decoration of a Bethe lattice of
coordination number 4, one is lead to introduce a
generating function which enumerates configurations
by number of quadruple points as well as by triple
points, double points, etc. The terms in this generating
function may be set in correspondence with con-
figurations on the ¢=2 and o=3 Bethe lattices. The
principle of the argument is the same as in Sec. VI, but
is more involved and will not be presented. If s and ¢
are the enumerating symbols for quadruple points and
triple points, respectively, the result may be expressed
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most compactly by introducing the generating function
J3(s,t; z) which reduces to Bs(z) when s=1 and t=1.
For this function we obtain in analogy to (83) the
relation

]3 (S,t; Z) = SZI4J3(1)t*; z*)+203B2(32‘Z(}2>+ZO+%, (86)
where
g0=2/(1—233),
= — bl 2 %
21 [1 (1 12iz¢%) ]/6!20, (87)

2% =52021%/ (1—6t2021),
*=(t+521)/531.

When one sets s=1, the relation (86) reduces to a
functional equation in fwe variables for J3(1,¢; z). This
equation may be solved in a double power series, but
owing to its complexity, we have not been able to solve
it in closed form. Consequently, it is not possible, for
example, to give explicit expressions for the cluster size
on such pseudolattices as the square Husimi tree.

Although we cannot give explicit formulas for all
lattices derivable from the Bethe lattices by site and
bond decorations, there seems no reason to doubt that
the nature of the critical singularities will be the same
in all cases. This seems to be connected with the infinite-
dimensional and multiplicative properties of the Bethe
lattices and their derivatives. By analogy with the
behavior of other statistical lattice problems, such as
the Ising model, one would expect the critical singu-
larities to be sharper for the normal lattices in two and
three dimensions than for the Bethe lattices. Thus, at
p=p. the gradient dR/dp might well be infinite and the
mean cluster size density might diverge as |p—p.|@
with a greater than unity. The sharpness would be
expected to fall off with increasing dimension and
approach the present results in the limit. Rigorous con-
firmation of these conjectures must await a compre-
hensive attack on the problem for the standard lattices,
but some indication of their validity can be obtained
from a numerical study of the initial terms of the con-
figurational series.!®
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When particles occupy the sites or bonds of a lattice at random with probability p, there is a critical
probability p. above which an infinite connected cluster of particles forms. Rigorous bounds and inequalities
are obtained for p. on a variety of lattices and compared briefly with previous numerical estimates. In
particular, by extending Harris’ work, it is proved that p.(s,Ls) > § for the site problem on a plane lattice
L, (without crossing bonds), while for the bond problem p.(b,Ls)+$.(b,L22) 2> 1 where L.? is the dual lattice
to L,. Simple arguments demonstrate that the bond problem is a special case of the site problem and that
the critical probabilities for the bond problem on the plane square and triangular lattice cannot exceed

those for the corresponding site problems.

1. INTRODUCTION

EVERAL authors'=7 have recently drawn attention
to the importance of cluster size and percolation
problems in various branches of physics, physical
chemistry, and statistics. These problems may be stated
in mathematical terms as follows: particles are dis-
tributed at random over an infinite linear graph L
composed of sifes (vertices) linked together by bonds
(lines). In the case of principal physical interest, the
linear graph L forms an infinite regular space lattice in
two or three dimensions. Two possibilities arise natur-
ally: (a) the site problem in which the particles occupy
only the sites of L; (b) the bond problem in which the
particles occupy only the bonds. Each site (or bond) is
supposed to be occupied independently of all others
with a fixed probability p. The site problem describes,
for example, a random binary alloy or dilute ferro-
magnetic crystal,*7 while the bond problem corre-
sponds to a randomly blocked maze through which the
percolation of a fluid may be envisaged. A group of #
particles on the lattice linked to one another through
adjoining bonds and sites is said to form a (connected)
cluster of size #. The task of the mathematical theory
is to calculate the statistical properties of these clusters
on a given lattice L as a function of the probability p
which measures the particle density.

An important feature of the problem is the existence
of a critical probability p.. When p is less than p. all
clusters are finite in size, but when p exceeds p. a
cluster of infinite size spreads through the lattice. In
the latter case there is a nonzero probability R(p) that
a given site (or bond) is occupied by a member of an

15, R. Broadbent and J. M. Hammersley, Proc. Cambridge
Phil. Soc. 53, 629 (1957).

2 J. M. Hammersley, Proc. Cambridge Phil. Soc. 53, 642 (1957).

3J. M. Hammersley, (a) Ann. Math, Stat. 28, 790 (1957);
(b) Proc. 87th Intern. Collog. ‘“Probabilités et ses Applications,”
Paris (1959), p. 17.

¢ C. Domb, “Fluctuation Phenomena and Stochastic Processes,”
Conference at Birkbeck College, London, March, 1959, reported in
Nature 184, 509 (1959).

5 R. J. Elliott, B. R. Heap, D. J. Morgan, and G. S. Rushbrooke,
Phys. Rev. Letters 5, 366 (1960).

6 C. Domb and M. F. Sykes, Phys. Rev. (to be published).

7 M. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609 (1961),
this issue.

infinite connected cluster of particles on the sites (or
bonds). As yet, critical probabilities have been calcu-
lated exactly only for certain pseudolattices” (infinite
Cayley trees and their generalizations). Numerical
estimates of po for the bond problem on the plane
square and simple cubic lattices have, however, been
obtained by Hammersley® who used a Monte Carlo
method, and Domb* and others®$ have shown how
estimates may also be obtained from series expansions
for the mean cluster size. The validity of such estimates
may be gauged by comparing them with rigorous upper
and lower bounds. General methods for obtaining such
bounds (for the bond probable) have been developed
by Hammersley,? but unfortunately these do not yield
close limits. The strongest result yet obtained is due to
Harris® who proved that for the dond problem on the
plane square lattice p.>%. The numerical evidence? ¢
suggests quite strongly that p.,=3% so that Harris’
result is probably the best possible lower bound.

In this article we consider the critical probabilities
of a range of lattice and obtain bounds and inequalities
connecting different lattices and different problems on
the same lattice. In particular, we show how the general
approach used by Harris can be extended rigorously to
cover the site problem on a plane lattice and the bond
problem on a pair of dual plane lattices. Our main con-
clusions for plane lattices are summarized in the follow-
ing relations in which s and & denote the site and bond
problem, respectively, H, S and T denote the plane
honeycomb, square, and triangular lattices, respectively,
and L, and L.? denote a regular two-dimensional lattice
with no crossing bonds and its dual lattice.

Site and bond problems
pe(s,H) 2 pe(5,5) 2 po(s,T), (L1)
pe(0,H) 2 p.(6,5) 2 po(5,T). (1.2)
p(5,5) 2 p:(5,5), (1.3)
pe(s,T) 2 p:(,T). (1.4)

8 J. M. Hammersley, lecture to the British Association, Dublin,
September 5, 1957 (unpublished).
9 T. E. Harris, Proc. Cambridge Phil. Soc. 56, 13 (1960).
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Site problems
po(s,H)>0.52. (1.5)
pe(s,L2) 2 3. (1.6)
Bond problems
pe(b,L2)+po(5,L°) 2 1. (1.7)

Since the square lattice S is self-dual, this last result
includes Harris’ theorem p.(5,5)2>% which, together
with (1.4), implies p.(s,5)>% independently of (1.6).
The relation (1.7) also shows, for example, that the
critical probability p.(b,H) for the honeycomb cannot
be less than unity minus the corresponding probability
$.(8,T) on the triangular lattice.

In the proof of the two results (1.6) and (1.7) [see
Appendixes], it is assumed that (a) the lattice has only
finitely many sites and bonds per unit cell, and (b)
the lattice possesses two perpendicular symmetry axes
about which it may be reflected into itself or, more
generally, that it may be topologically distorted into
such a symmetric form. The assumption (a) suffices to
exclude certain pathological lattices for which the
theorems fail owing to the growth of infinite cluster
within a unit cell. From the physical viewpoint, (a) is
no restriction. The assumption (b) is probably not
necessary for the general validity of (1.6) and (1.7),
but it facilitates proof and is not, in any case, a serious
restriction for physical applications since it excludes
none of the standard plane lattices. [Many asymmetric
lattices apparently excluded can be included by con-
verting them into symmetric lattices through the addi-
tion of sufficient extra bonds and sites and then using
* the containment theorem (2.4) of Sec. 2. Indeed (1.6)
and (1.7) are probably valid for an arbitrary planar
graph provided it is “finite in the small” and reasonably
“homogeneous in the large,” although these conditions
are not easy to formulate precisely.]

Inequalities similar to (1.1) and (1.2) also hold be-
tween the three-dimensional tetrahedral, simple cubic,
body-centered cubic and face-centered cubic lattices,
respectively.

Estimates of the critical probabilities for the site
problem on the plane lattices have been made by Elliott,
Heap, Morgan, and Rushbrooke® who obtained from
the first few terms of a series

pe(s,T) =0.36, $.(5,5) =~0.48, p.(s,H)~0.49.

These estimates are inconsistent with the strict bounds
(1.5) and (1.6). In fact, the errors must be at least 39,
4, and 69, respectively. For the square and honeycomb
lattices, the errors are within the 109, confidence limit
quoted,® although the true figure for the honeycomb
seems to lie even outside this range.#$ The estimates
of Domb and Sykes, based on longer series and a more
sensitive extrapolation procedure, are in accord with
our conclusions. They find, for the site problem,

pc(s,T) ~0.51, p.(5,5) ~0.55, p.(s,H)>0.7,

621

and for the bond problem
2:(0,T) >~0.34, $.(5,5) =~0.50, p.(b,H)=0.67.

For the three-dimensional cubic lattices Elliott et al.5
estimated

$e(s,F.C.C.)~0.18, 5.(5,B.C.C.)=0.22,
$(5,S.C.)=~0.28.

The last result for the simple cubic lattice has been
confirmed by Domb and Sykes® who also considered the
bond problem for which they found

$6(,F.C.C.)~0.12 and $.(5,S.C.)~0.24.

All these estimates are consistent with the rigorous in-
equalities and bounds which follow from the present
analysis,

2. CONNECTIVITY RELATIONS

Consider the plane triangular lattice 7 in which six
bonds radiate from each site to the nearest neighboring
sites. If all the bonds parallel to a fixed direction, say
the horizontal, are removed, a lattice remains which is
topologically identical with the plane square lattice .S
in which four bonds radiate from each site. In a similar
way, if the squares of the plane square lattice are iden-
tified with the squares of a chess board and the bonds
forming the right-hand edge of each black square are
removed, the remaining lattice is topologically identical
with the plane honeycomb lattice H of coordination
number three. In short, the triangular lattice T contains
the square lattice S which in turn contains the honey-
comb lattice H. Loosely, one might say that the “con-
nectivity” of the triangular lattice exceeds that of the
square lattice which exceeds that of the honeycomb
lattice.

When an infinite cluster of particles exists in a lattice,
a connected path may be drawn from particle to
particle “right across” the lattice. One feels intuitively
that the greater the connectivity of a lattice, the easier
it should be to find a path across for given p. This in
turn suggests that a lattice of greater connectivity
should have a lower critical probability.

To put the argument in more formal terms, consider
the site problem on the triangular lattice T and suppose
p exceeds the critical probability p.(s,T) so that an
infinite cluster of particles is present in the lattice. The
removal of a given bond may leave all particles in the
infinite cluster still attached or it may disconnect one
or more particles from the infinite cluster. Removal of a
fraction of all bonds must, therefore, reduce the prob-
ability R,(p) that a given site belongs to an infinite
cluster or, at best, leave it unchanged. Thus between
the square and triangular lattice we have the inequality

Rq(5,5; ) S R(5,T5 p). 2.1)

(The symbol s denotes sites as before.) Now the critical
probability is defined by the vanishing of the density of
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infinite clusters, that is by
R,($.—0)=0, R,(p+0)>0.

Consequently, the critical probabilities are related by
the inequality
2e(5,5) 2 pe(s,T)-

Clearly, the argument applies irrespective of dimensions
or structural details to any pair of lattices, one of which
contains the other, so we may write generally

pe(s,L)2 po(s,LY),

where L1 contains L. The result (1.1) follows as a special
case and so does the corresponding chain of inequalities
for the three-dimensional tetrahedral, simple cubic,
body-centered cubic and face-centered cubic lattices.
If all the bonds linking a site to the lattice are removed,
the site itself may be deleted without affecting the argu-
ment. With this convention, the kagomé lattice,’® for
example, is contained in the triangular lattice and the
inequality (2.4) applies.

For the bond problem, the argument goes through
when it is noted that the removal of a set of bonds
together with the particles that occupy them (at random)
alters the total number of particles and bonds on the
lattice but does not alter the probability ¢ of occupation
of a bond. Alternatively, one may consider the addition
of extra bonds to, for example, the honeycomb lattice
so as to form the square lattice. If an infinite cluster is
present initially, then an infinite cluster must still
exist in the resulting square lattice. Consequently, the
critical probability for the square lattice cannot exceed
that for the honeycomb lattice. This establishes the
validity of (2.4) for the bond problem as well as for the
site problem and hence justifies (1.2).

Experience with configurational problems on lattices
indicates that any over-all change, however slight, in
the structure of the lattice, results in a change of the
corresponding critical parameter.’! Consequently, it is
highly probable that the equalities in the connectivity
relations for the critical probabilities can only occur
if the total density of deleted bonds is zero. To prove
rigorously the strict inequality calls, however, for a
more subtle analysis.

The foregoing general result may also be used in
certain cases to derive a relationship between the bond
and site problems on the same lattice. To show this
we note that the bond problem on any lattice L is
isomorphic with the sife problem on a suitably defined
covering lattice LC. The covering lattice is constructed
by replacing each bond of L by a site (placed at its
center) and linking these sites together by sufficient
new bonds to ensure that if two bonds of L meet (at a

(2.2)

(2.3)

(2.4)

10 The kagomé lattice, which has coordination number four,
can be constructed by placing a site at the center of each bond
of the regular honeycomb lattice and joining these sites by nearest
neighbor bonds (deleting the honeycomb bonds and sites).

M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959).
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vertex), then the corresponding two sites of LC are
joined by a direct bond and vice versa. The covering
lattice of a linear chain, for example, is also a linear
chain, while the covering lattice of the plane honeycomb
is the kagomé lattice. Any configuration of occupied
and vacant (unoccupied) bords on L will be in one-one
correspondence with a configuration of occupied and
vacant sites on LC, and all topological relations between
bonds on L hold between the corresponding sites on LC.
Consequently, the configurational generating function’
for the bond problem on L is identical with that for the
site problem on L¢ and the two critical probabilities
are equal, i.e.,
$:(8,LC)=p.(s,L). (2.5)
Itis evident that not every lattice can be the covering
lattice for another lattice. Consequently, although any
bond problem is equivalent to a suitable site problem,
the reverse is not true. In other words, the site problem
is of greater generality.
Now the covering lattice S of the plane square lattice
S is a chess board of alternate squares and tetrahedra,
i.e., it is a normal square lattice of sites and bonds with
two additional diagonal bonds (crossing) in each alter-
nate square. If these diagonal bonds are removed, one
regains the square lattice: in other words, S¢ contains
S. From (2.4) and (2.5) we thus obtain the inequality

2:(5,5)2 p.(5,5) (2.6)

which states that the critical probability for the site
problem on the square lattice exceeds (or possibly
equals) that for the bond problem on the same lattice.
In combination with Harris’ theorem,

p:(0,5)2%.

This proves rigorously as mentioned in the Introduc-
tion, that

(2.7)

p(s,5) 2 3. (2.8)

In accord with the comments above, it seems very
probable that the strict inequality holds in (2.6) and
(2.8).

For the plane triangular lattice, we can prove in a

similar way that
pe(s;T)2 p.(0,T).

The covering lattice T¢ can be regarded as a kagomé
lattice with nine additional diagonal bonds in each
hexagon so that each of the six sites around a hexagon
is connected directly to the other five. If these sites
are numbered 1 to 6 in cyclic order and the six bonds
1,4), (2,5), (3,6), (1,3), (3,5), and (5,1) are deleted
leaving the bonds (2,4), (4,6), and (6,2), the hexagon
is decomposed into four triangles. If the corresponding
bonds are deleted throughout the covering lattice T°C,
one is left with a lattice which is topologically identical
to the original triangular lattice T (although because
of the distortion this is not easy to see at a glance).

(2.9)
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Intuitively, it is clear that the “connectivity” of a
covering lattice is always greater than the connectivity
of the original lattice. Thus, for example, the coor-
dination number of L€ is larger than that of L (ex-
cluding the trivial case of a linear chain). Consequently,
although we cannot present a general proof, it seems
highly probable that the critical probability for the site
problem always exceeds that for the bond problem on
the same lattice. This is borne out by exact calculations
for a range of pseudolattices’” and by numerical esti-
mates.f

3. GENERAL BOUNDS

Hammersley' has shown how to obtain certain
upper and lower bounds for the bond problem on a
general lattice and, in particular, Broadbent and
Hammersley! showed that if ¢, is the number of distinct
non-self-intersecting walks of » steps leaving the
origin of a lattice L, then

p:(0,L) 2 1/u(L) G.1)
where

Inu(L)=1lim #! Inc,. 3.2)

n—®R

The existence of the walk limit u(L) was proved by
Hammersley and Morton," and Fisher and Sykes™ have
shown how to obtain accurate estimates and rigorous
upper and lower bounds for it. Hammersley’s methods
for the bond problem are easily extended to deal with
the site problem, and one may prove, for example, the
inequality corresponding to (3.1), namely,

pe(s,L) 2 1/u(L).

Application of this to the honeycomb lattice using the
bound

(3.3)

w(H)<1.928

obtained by Fisher and Sykes"
u~=1.845) yields

3.4)

(who estimated

pe(s,H)>0.519. (3.5)

This serves to disprove the conjecture that the critical
probabilities for the site problem should be exactly %
for all plane lattices. (Initial numerical estimates lent
some support to this conjecture.*®)

The result (3.5) can easily be improved, but in view
of the lower bound" 1.787 for u(H), one could not obtain
a lower bound for p.(s,H) or p.(b,H) higher than 0.560
on the basis of the theorems (3.3) and (3.1). The
numerical evidence of Domb and Sykes® suggests that
these critical probabilities are likely to exceed 0.65 so
that the theorems are rather weak.

To establish (3.3), we follow closely Broadbent and
Hammersley’s proof of (3.1). An #n-step walk in L is

t Note added in proof. This general theorem has since been
established rigorously by Hammersley (to be published).

12, M. Hammersley and K. W. Morton, J. Roy. Stat. Soc.
B16, 23 (1954).
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said to be allowed if all the sites it passes through and
reaches after leaving the origin are occupied by particles.
If p;n is the probability that exactly j of the ¢, non-self-
intersecting walks of # steps are allowed then the prob-
ability that at least one is allowed is simply

pP,= Z Din-

J=1

(3.6)

When an infinite cluster is present there must be a
nonzero probability that at least one non-self-inter-
secting walk is allowed for all #, i.e., P,>0. Con-
versely, if P,— 0 as n becomes infinite, an infinite
cluster cannot exist. Now by (3.6)

P.< gljpin=<.7->n (3'7)

where (j)» is the expected number of allowed walks of
n steps. Since the walks are non-self-intersecting, the
probability of a given walk being allowed is $”, and so

(j)n= pien (3-8)

which, in virtue of (3.2), behaves asymptotically like
[pu(L)]". Consequently, if p<1/u(L), {§), vanishes as
#n become infinite and by (3.7) so must P,. This
establishes that the critical probability must be at
least as great as 1/u(L) which is the result (3.3).

4. HARRIS’ THEOREM AND ITS EXTENSIONS

Harris® considered the bond problem on the plane
square lattice and gave a rigorous formal mathematical
proof of the inequality,

p:(6,5)2 3.

Owing to the complexity of the mathematical details,
Harris’ paper is not easy to follow and so we now
present an outline of his proof with emphasis on the
underlying principle which can then be applied to the
site problem and to other lattices.

We first observe that for any lattice in which bonds
(or sites) are occupied with probability p, one can
associate a complementary situation in which the prob-
ability of occupation is p'=g=1—p. Clearly, there is
complete symmetry between the two situations, and the
complementary problem merely describes the clustering
of vacant bonds (or sites) in the original case. Thus if
the density of infinite clusters of occupied bonds (or
sites) is R(p), the density of infinite clusters of vacant
bonds (or sites) is R(1—p). Consequently, if p,<3,
there is a range of values of p (from p. to 1—p.) in
which an infinite cluster of occupied bonds (or sites) and
an infinite cluster of vacant bonds exist simultaneously.

One may also associate with any L,, which denotes a
plane lattice without crossing bonds, a dual lattice L.?
constructed by placing a site at the center of each
elementary polygon in the lattice L, and joining these
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sites by nearest neighbor bonds so that one bond of the
dual lattice crosses each bond of the original lattice and
vice versa. The dual of a dual lattice is thus the original
lattice. The triangular and honeycomb lattices are
typical dual pairs, and the plane square lattice is
evidently self-dual. For fixed p any configuration of
occupied and vacant bonds on L, corresponds to a
unique configuration on the dual lattice L,P.

As an introduction to Harris’ methods, we show why
an infinite cluster cannot exist in a two-dimensional
lattice L, of finite width. To be more precise we will
prove that the probability of such an event is zero.
(Trivial cases are avoided by assuming throughout
that 0<p<1.) Consider firstly the site problem on a
horizontal strip, m sites wide. If the probability
R,(s,L2; p) that a particular site belongs to an infinite
cluster of occupied sites is nonzero, then there is a
nonzero probability that an infinite allowed walk leaves
the origin and continues indefinitely along the strip.
Such a walk would be blocked however by the occurrence
of a column of m vacant sites extending across the strip.
(Remember that crossing bonds have been excluded.)
The probability that a specified column is vacant is

gm=(1—-p)™>0.

Now it is a well-known result of probability theory
that an event which has a fixed nonzero probability
will with probability one occur at least once in an
infinite series of independent trials (and, in fact, will
recur infinitely often).”* We conclude that a column of
vacant sites will eventually be encountered and con-
sequently, the walk is certain to be blocked. Thus with
with probability one no infinite allowed walk exists in
the strip and so

R,(s,Lz; p)=0 (m finite). 4.2)

For the corresponding bond problem it is convenient
(but not essential) to avoid edge effects by wrapping the
lattice on a cylinder of circumference m sites. In this
case the allowed walk proceeds via occupied bonds and
so it is appropriate to consider the complementary dual
lattice LsP of width m' bonds. A closed chain of occupied
bonds stretching directly around the dual cylinder will
occur at a specified position with probability p'™
=¢™ >0 and hence is certain to occur at some position.
Such a chain on L,? corresponds to a series of vacant
bonds on L, which completely block any walk along
the strip. (These blocking bonds on L, are not neces-
sarily connected.) We may conclude as before that the
probability of an infinite cluster of occupied bonds is
zero.

Harris uses essentially the same principle for the
infinite square lattice to prove that R,(5,S;1)=0.

18 See, for example, W. Feller, Probability Theory and its A ppli-
cations (John Wiley & Sons, New York, 1950), Sec. 8.3.
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Since R(p) is a nondecreasing function of p, this implies
that p.(5,S) 2> § as stated before. When p=3, the com-
plementary dual to the square lattice is identical to
the square lattice itself. Harris makes the hypothesis
that R,(6,5;3%)>0, i.e, that an infinite cluster of
occupied bonds does exist'* when p=2%. He then shows
that

(A) with probability one there exists a closed (connected)
chain of occupied bonds which encloses the origin
site O (and any specified finite region surrounding O).

Consequently, such a chain also exists on the comple-
mentary dual lattice. But, as for the strip, this implies
the existence of a series of vacant bonds in S which
completely surround O and so block any infinite walk
from O. Thus with probability one no infinite allowed
walk leaves O and there is no infinite cluster in S.
This contradicts the hypothesis and so we conclude
R,(5,S;%)=0 as desired.

The complexity of Harris’ proof arises from the dif-
ficulty of establishing the assertion (A) rigorously. It
is necessary, in particular, to prove similar intermediate
results about the probabilities, R(p,7/2) and R(p,r),
that the origin is connected to a cluster with an infinite
component lying entirely within one quarter plane and
within one half-plane, respectively.

Before discussing the details of the proof and its
extensions, however, we note that if (A) is proved for
the site problem on a lattice L, on the hypothesis
R,(s,L2; 3)>0, we may conclude generally that

pe(s,Le) 2%

as stated in (1.6). In this case it is not necessary to
introduce the dual lattice since at p=3 the comple-
mentary lattice situation is identical to the original.
The assertion (A) thus shows that a connected ring of
vacant sites surrounds the origin and hence with prob-
ability one there is no infinite cluster of occupied sites.
This is a contradiction and the result (4.3) follows
immediately. The gist of the argument may be stated
picturesquely as showing the impossibility of a two-
dimensional random sponge, or the fact that all seas
in an infinite continent are lakes, that is, inland seas
having finite area and shoreline !'®

For the bond problem on a pair of dual lattices one
may formulate in analogy to (A) the assertion:

(B) the hypothesis R(b,Ls; p)>0 implies R(b,Ls"; 1—p)
=0.

(4.3)

In other words, one cannot simultaneously have infinite
clusters on a lattice and on its complementary dual.

14 Harris refers to active and passive bonds rather than occupied
and vacant bonds. He calls an infinite connected cluster of occu-
pied bonds a CISAL and of vacant bonds a CISPL. His R(p)
denotes our R,(b,S; p), i.e., the probability that a sife is connected
to an infinite cluster of bonds (see Appendexes A and B).

15T am indebted to Dr. M. F. Sykes for these metaphors.
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Since R(p) is a nondecreasing function of p which
reaches a maximum at p=1, this implies

pc(0,Lo)+:(5,Ls%) 2 1 (4.4)

as stated in (1.7). Because infinite clusters of vacant
and occupied bonds could apparently intersect one
another freely at lattice sites, this result is less obvious
intuitively than (4.3) and draws attention to the over-
whelming importance of the assumption of complete
randomness.

Rigorous proof of assertion (A) for the site problem
and hence of (4.3) can quite easily be achieved by
modifying the details of Harris’ proof provided it is
assumed (as mentioned in the Introduction) that the
lattice has two orthogonal symmetry axes. The main
feature is the repeated use of the complementary lattice
situation rather than the dual lattice. The necessary
changes are presented in detail in Appendix A.

Proof of (B) and hence of the theorem (4.4) can also
be based on Harris” work, but is slightly more tricky
owing to the need to keep account of the possibilities
both on L; and on its (distinct) dual. The arguments
needed for a strict proof are given in Appendix B.
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APPENDIX A. SITE PROBLEM ON
A PLANE LATTICE

In this Appendix we consider only the site problem
on a plane lattice with no crossing bonds and prove

pe(s,L2)2 3. (A1)

It is sufficient to prove the result for a close packed
lattice L., that is, a lattice in which all the basic
polygons are triangles so that the nearest-neighbor sites
of any site form a closed connected chain. For if the
lattice L, in question is not close packed, it can be
made so by the addition of sufficient extra (noncrossing)
diagonal bonds,'® and if Ly, is the resulting close-packed
lattice, one has by (2.4)

pa(s,L2) 2 pa(s,Lac).

We follow as closely as possible Harris’ proof® and
retain his numbering of sections, lemmas, etc., but with

(A2)

16 By considering paths from one point of the plane to the cor-
responding points in the adjacent unit cells, one can prove that
either the plane is entirely divided up into finite polygons or else
that the lattice can be decomposed into separate one-dimensional
strips. In the latter case the theorem is immediate. In the former,
each finite polygon can be triangulated with a finite number of
additional bonds.
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the prefix H. The appropriate transcriptions of Harris’
terminology and definitions are as follows:

site
bond
bond with both terminal sites oc-
cupied
passive link : bond with both terminal sites vacant
R(p): Ru(s,Lac; p)
pd: Pc(S,Lh)
CISAL (CISPL): infinite cluster of occupied (vacant)
sites
T: translation of a lattice configuration
through a distance corresponding to
one unit cell.

vertex:
link :
active link:

The proof commences in Sec. H3 where the ergodic
properties of T are established. This requires no further
modification. Section H4 is a probabilistic lemma on
the combination of independent events which is required
in lemma H8.1 and also need no changes.

In Sec. H5 the result is proved for one quadrant. At
this point it is convenient to introduce the symmetry
assumption for the lattice. We suppose that, possibly
after a suitable topological distortion of the lattice, it
is possible to introduce a rectilinear coordinate system
with coordinates # and y such that the lattice is in-
variant separately under the two transformations
x ——2x and y —>—y. Without loss of generality we may
suppose the x and y axes are orthogonal. The trans-
formation T will then stand for translation through one
unit cell along either the x axis (taking x into x+1) or
the y axis (taking y into y+1) as required from the
context. To avoid undue complication of detail, we
will omit the essentially straightforward modifications
needed to allow for the fact that the sites of a general
symmetric Ly, are not all equivalent and do not neces-
sarily lie on the integral points of the Cartesian plane.!”

An immediate consequence of the symmetry assump-
tion is that the probability R(p,m/2) that a vertex at
(or adjacent to) the origin is connected to a cluster
with an infinite component lying entirely in one
quadrant is (for corresponding points) independent of
the quadrant concerned. For the half-planes similarly
the probability Ry(p,r) is the same for L(y>0) and
L(y<0), but it is not necessarily equal to Rx(p,r) the
probability for the right and left half-planes L(x20)
and L(x<0). With these preliminaries, lemmas H5.1
and HS.2 which establish the existence of an active
chain surrounding the origin in one quadrant when
R(,7/2)>0 stand, but definition HS.1 is superfluous.

17 To remedy these omissions, one shows (along the lines of
footnote 16) that either the theorem is immediate or that (C)
any two sites in a cell may be connected together through a finite
number of bonds. With (C) Broadbent’s and Hammersley’s
general treatment of the bond problem with a finite number of
different classes of site, etc. (footnote 1) shows that for all sites
and bonds, R(p) vanishes at the same value of p(=p.). The
assertion (C) is also directly useful in generalizing lemmas H6.1,
H7.2, and H8 when no sites lie on the symmetry axes.
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Lemma H5.3 is still valid but its proof should be modi-
fied as follows: (The dual lattice is not used.)

Lemma 5.3. We have R(3,7/2)=0.

Proof. Take p=1%. Suppose R(%,m/2)>0. Then with
probability 1 there is a chain C of active links (i.e.,
occupied sites) satisfying the condition of lemma H5.2.
If R(3,7/2)>0, the probability is positive that in the
complementary lattice there is an infinite cluster of
occupied sites (CISAL) in the quadrant L(x>0, y>0)
containing the origin. But such a cluster represents a
CISPL on L, which must include a chain C’ of passive
links (i.e., vacant sites) crossing C at some site. But
this is impossible and so R(3,7/2)=0.

In Sec. H6 it is proved with aid of lemma H5.3 that
at p=1% no infinite cluster exists in the half-plane. For
the present case it is necessary to modify lemma H6.1
to avoid assuming the full symmetry of the square
lattice. In fact with two slight changes, the existing
proof establishes:

Lemma 6.1'. If Ry(3,7)>0, then Rx(3,7)=0 so that
without loss of generality we may assume Rx(},7)=0
always.

The modifications are as follows: In the first para-
graph on the hypothesis Ry(},m)=r>0, the prob-
ability P(W,) is »* (rather than #2/2). In the second
paragraph one must, as before, consider the comple-
mentary lattice rather than the dual to prove

Rx(},7)=0.

The next stage is to establish that if R(3)>0, there
is a positive probability than an active chain lying in a
finite part of the plane connects two specified points on
one axis. Lemma H7.1 is valid but the first section of
its proof leading to the conclusion “there is with prob-
ability one an active half-circuit lying in L(x>0)” must
be adapted to avoid consideration of the dual lattice.
The assertion may be proved as follows: By lemma
H6.1 there is probability zero that there exists within
L(x20) either an infinite cluster of vacant sites con-
taining the origin or an infinite cluster of occupied sites
containing the origin. Hence with probability one the
origin is connected either (a) to a finite cluster of vacant
sites in L(x20), or (b) to a finite cluster of occupied
sites in L{x2>0). In case (a) the external perimeter™»
of this cluster is a set of occupied sites which, since the
lattice is close packed (by hypothesis), must form a
(connected) active half-circuit lying in L(x>0). In
case (b) the external perimeter must belong to a finite
cluster of vacant sites in L(x>0) and the outermost
external perimeter of this second cluster will then be
the required active half-circuit. The remainder of the
proof of lemma H7.1 and lemma H7.2 and its proof
(where the use made of symmetry is justified by our
assumptions) require no modification.

The final result for the whole plane is deduced in
Sec. H8. Lemma HS8.1 shows that if R(3)>0, there is
a positive probability that a pair of active half-circuits
link (0,3) to (0, —3) and together form a closed circuit
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around the origin. (The proof again relies on symmetry.)
The proof of theorem H1 then establishes assertion (A)
for the site problem and consideration of the comple-
mentary lattice then proves p.(s,Ls.) 2 % as required.

APPENDIX B. BOND PROBLEM ON DUAL LATTICES

In this Appendix we consider the bond problem on a
pair of dual lattices L, and L,? and prove that

pc(b’L2)+Pc (b,LZD) 2 1.

As in Appendix A, we follow Harris as closely as
possible. Appropriate transcriptions are now

(B1)

active link : occupied bond
passive link: vacant bond
R(p): Re(b,Ls; p)
Pd: P c(b;LQ)
CISAL (CISPL): infinite cluster of occupied (vacant)
bonds.

For brevity, the superscript D will be used to denote
properties of the dual lattice. The transformation T is
defined as in Appendix A. As before, we assume L,
(and hence L,P) has two orthogonal axes of symmetry
and we ignore, as before, the inessential complications
that might arise from the existence of different classes
of bonds, etc.t?

The preliminary lemmas H3.1 and H4.1 require no
modification. Lemmas HS5.1 and HS.2 which prove the
existence of a chain circling the origin in the quarter
plane when R(p,7/2)>0 now hold separately for L,
and for L, [in the latter case on the hypothesis
R2(p,x/2)>0]. Consideration of the relationship be-
tween the complementary dual lattices as in lemma
HS5.3 now leads to the modified lemma

Lemma 5.3'. If R(p,7/2)>0, then RP(1—p, n/2)=0
and vice versa.

Since R(p,r/2) is a nondecreasing function of p, this
implies:

Lemma 5.4'. There exist probabilities po and po® with
pot+po® 21, such that

R(P,W/2)=0, P<po and RD(P7W/2>='O; ?<P0D
>0, p>po >0, p>po®.

If R(p,m/2) is nonzero, then R(p,r) and R(p) must
also be nonzero and, consequently, . and p.2 certainly
do not exceed po and p¢P, respectively. To obtain a
result for the half-plane as in lemma H6.1, we suppose
that R(p,m)>0 for some p<po. With the aid of lemma
5.4" we can then prove, using Harris’ argument, that
there is an active chain connecting a site on the positive
v axis to a site on the negative y axis. Consideration of
the complementary dual lattice then leads to

Lemma 6.1'. If Ry(p,7)>0 when p<p,, then

RxP(1—p, m)=0.

The corresponding theorem holds for the dual lattice
so that, as for the quarter plane, we deduce
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Lemma 6.2’. There exist probabilities $,(< po) and
Pp12(< poP) with pi+p:122> 1 such that

Ry(p,m)=0, p<p: and RxP(p,x)=0, p<p®
>0, p>p >0, p>piP.

We now need to establish to existence of active half-
circuits between specified points. Following Harris’
argument, one proves

Lemma 7.1'. If Rx?(pP,m)=0 (as when p?<p,?)
and if V is any box in L,, then there exists a box V’,
| V’|>| V| such that with probability exceeding 3 (say),
there is an active half-circuit in L:(x20)N(V'—=V)
when p=1—p? (>1—p).

This result and the corresponding dual lemma can
now be used to show the existence of an active half-
circuit with predetermined end points on the hypothesis
R($)>0 when RxP(1—p, 7)=0, i.e., when 1—p<p,2,
Thus:
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Lemma 7.2’. Suppose R(p)=r>0 and Rx?(1—p, )
=0 (fulfilling conditions of lemma 7.1"). Let V be
any box in L.. Then for sufficiently large 7 there is
a box V" in Ly, |V]<i<|V"| such that the proba-
bility exceeds #2/32 that there is an active chain in
LyN(V"=V) connecting (0,:) to (0, —12).

We may now proceed without essential modification
to lemma H8.1 which proves that under the same con-
ditions there is with fixed probability a closed chain of
active links through (0,i) and (0, —%) which sourrounds
(0,0) in a finite part of L,. As in theorem H1, this is
sufficient to prove the existence with probability one
of a set of passive links on’the complementary dual
which block any active chains from the origin. Thus if
R(p)>0 where p>1—p,2, then R?(1—$)=0 and cor-
respondingly for the dual situation. Combined with
lemma 6.2’ (which states that p,+p2> 1), this proves
that we cannot have both R(p)>0 and R?(1—p)>0.
The theorem (B1) follows at once.
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INTRODUCTION

HE application of the theory of linear graphs to

the analysis of an ordinary network, ie., a
network consisting entirely of R, L and C elements,
has been found very useful, particularly for computer
analysis of a network.! However, because of dependent
node pairs, the graphical characterization of a network
containing active or mutually coupled devices is not
as simple as it would be for an ordinary network.
Percival? introduced the artificial two-terminal ele-
ments, the so-called “current and voltage elements,”
in order to characterize a mutually dependent node
pair and defined the “mathematical equivalent circuit”
of a network containing tubes and transformers. Fol-
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by an extension of Whitney’s definition of 2-isomorphic
graphs.” The properties of these newly defined 2-semi-
isomorphic graphs are then investigated and a simple
formula is obtained for the sign of the common tree
product of the two graphs. The current and voltage
graphs for a network are shown to be special cases of
2-semi-isomorphic graphs and the application of the
properties of 2-semi-isomorphic graphs to their analysis
is illustrated.

1. 2-SEMI-ISOMORPHIC GRAPHS AND
THEIR PROPERTIES

Definition 1
The principal node of an edge® of a tree of a connected
linear graph is the one of the two terminal nodes of the
edge that is located furthest from a fixed reference
node in a path of the tree containing the edge and the
reference node. The other node of the edge is called
the “minor node” of the edge in the tree. Since there

exists a unique path in a tree from a node to every
other node, the principal and minor nodes of an edge

4 4

(@) (b)
FiG. 2. Trees (a) ¢ and (b) ¢ of G.

7 H. Whitney, J. Math., 55, 236 (1933).

8 The term ‘“branch” may be substituted occasionally for
‘‘edge,”” but the term “element”” will only be used in the sense of
“element of a network” or ‘“‘element of a matrix.”
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(REFERENCE
= NODE)

F1c. 3. Tree ¢ divided into disjoint subgraphs ¢ and ¢”.

.‘ =
(REFERENCE
(REFERENCE

NODE)
= NODE)

(2) (b)
FiG. 4. Subgraphs represented by (a) At:; and (b) Atzj.

of a tree are always distinguishable. Note that the
principal and minor nodes of an edge are determined
with respect to a chosen tree of a connected graph,
and, if there exists another tree of the graph which
contains the edge, then the principal and minor nodes
of the edge in this tree may not be the same as found
in the first tree. This is illustrated in Example 1. It is
also clear that a reference node of a graph cannot be
the principal node of any edge of the graph. Then
lemma 1 follows directly from definition 1.

Lemma 1

In a graph or subgraph of a graph which contains no
circuits (loops), no node can be the principal node of
more than one edge of the graph or of the subgraph of
a graph.

Example 1. Given the graph G in Fig. 1 where node
4 is the reference node. Let us choose a pair of trees of
G, t1 and ¢, as shown in Fig. 2. Then, in #, the principal
nodes of edges ¢, and e5 are nodes 3 and 1, respectively.
However, in £, nodes 2 and 3 are the principal nodes of
es and es. It is noted that the principal and minor nodes
of e4in ¢, are interchanged in ¢, as are the principal and
minor nodes of es.

Let us denote the incidence matrix® of a connected
and oriented graph G with v vertices and e edges by 4.

The incidence matrix A=[a;;] is a matrix with v
rows and e columns such that

a;;=1 if the element j is incident at vertex 7 and
is oriented away from the vertex,
= —1 if the element j is incident at vertex ¢ and
is oriented towards the vertex,
=0 if the element 7 is noc incident at vertex i.

9 S. Seshu, IRE Trans. PGCT CT-2, 356 (1955).
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TasBiE I. Relationships between G, and G, for operations
performed on G;.

Operations on G, Relationships between G; and G;

No operation
Operation 1
Operations 1 and/or 2
Operations 1 and/or 2
and/or 3

isomorphic
1-isomorphic
2-isomorphic
2-semi-isomorphic

Let us denote a square submatrix of the incidence
matrix corresponding to a tree of the graph by A4:. A¢;
is the matrix obtained by deleting row ¢ and column j
from A.. |4.|;; is the minor of the determinant of A,
of (i7) position. Then

Lemma 2

nonzero, if ith node is the principal node of
Jth edge in £, and
| 4eliis
zero, if 4th node is the minor node of jth

edge in Z.

Proof. Consider an edge j of a tree ¢ of a connected
graph. Denote the principal and minor nodes of edge j
by nodes 7 and £, respectively. Since a tree is a circuitless
graph or subgraph of a connected graph, it is possible
to cut tree ¢ by removing edge j into two disjoint sub-
graphs ¢" and ¢, such that ¢’ contains the reference node
of ¢, as shown in Fig. 3. Now expand the determinant
of A;=[a,.] about column j. Then, one gets!®

| A:| = (—1)Hia | As] 4 (— D)FHag 4. k7#0, (1)

where a;; and ax; are nonzero elements of 4.

The submatrix Au; is the incidence matrix of the
subgraph of ¢ obtained by removing edge j and identi-
fying node ¢ with the reference node r as shown in Fig.
4(a), while Au; represents the subgraph of ¢ obtained
by removing edge j and identifying node £ with the
reference node as shown in Fig. 4(b). Since the sub-
graph corresponding to As; contains a circuit and is
not connected, |A:{+;=0. Therefore, from (1),
| A¢]i;40. It is also clear that the subgraph of A¢;is a

(b)
Fi1c. 5. 1-Isomorphic graphs (a) G, and (b) G.

10Tt is a well-known theorem that a square submatrix, of order
(n—1), of the incidence matrix of a connected graph with # nodes
is nonzero if and only if the edges corresponding to the columns of
the_submatrix constitute a tree of the graph (see reference 9).
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(a) (b)

(b)
F16. 7. 2-Semi-isomorphic graphs (a) G, and (b) G..

connected subgraph of ¢ with no circuits. Hence lemma
2.

Let us now define the operations to be performed on
a graph G containing e edges and 7 nodes.

Operations. 1. Break G; at a single node into two
disjoint connected pieces, or join two connected pieces
at a node. 2. Cut G, at two nodes into two connected
pieces and turn one of the pieces around at the two
nodes. 3. Remove one or more edges in G; and put them
back between any two nodes in G. Operation 3 is
proposed as an addition to operations 1 and 2 defined
by Whitney.”

If we let the graph resulting from any of the oper-
ations defined, or combination of the three operations,
be denoted by G, then Table I gives the relationships
between Gy and Gos.

The following example illustrates these relationships
between G, and G,.

Example 2. (a) 1-isomorphic graphs: If we are given
a graph G in Fig. 5(a), cutting G, at ¢ results in G, as
shown in Fig. 5(b). G; and G, are 1l-isomorphic with
each other. (b) 2-Isomorphic graphs: We are given a
graph G, in Fig. 6(a). Break G; at nodes b and e into
subgraphs G’ and G,”, G\’ containing edges 1 and 5,
and Gy, edges 2, 3, 4, and 6. Next, turn G around
nodes b and e to obtain G, as shown in Fig. 6(b). Gy
and G, are said to be 2-isomorphic with each other.
(c) 2-semi-isomorphic graphs: We are given a graph
G, in Fig. 7(a). Remove edges 3, 4, and 5 in G, and
reconnect them between node pairs (ac), (bd), and (cd).
This results in Gs as shown in Fig. 7(b). G, and G are
2-semi-isomorphic with each other. From the definition
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(b)
Fi1c. 8. 2-Semi-isomorphic graphs (a) G1 and (b) Gs.

(@)

of operation 1 and the example, it is noted that oper-
ation 1 is valid on G, only when G, is a separable con-
nected graph or collection of disconnected graphs.
However, a graph corresponding to an electrical net-
work is, in general. not separable. Therefore, we elimi-
nate operation 1 from our further discussion. That is,
we assume that a graph G, which is 2-semi-isomorphic
to G, is obtained by operations 2 and/or 3.

Definition 2

In 2-semi-isomorphic graphs G, and G, edge e; in
G: and the same edge in G, together are called the
“edge-pair ¢;”” of G and G..

Definition 3

Let the terminal nodes of the edges in an edge pair
of 2-semi-isomorphic graphs G: and G. be (3,7) and
(p,9), respectively. If i=p and j=gq, and the orien-
tation of both edges in the edge-pair is the same, then
the edge pair is said to be ordinary; otherwise, it is
active. Each edge of an ordinary and active edge pair
is called an ordinary edge and active edge, respectively.
The definition of the classification of edges in 2-semi-
isomorphic graphs will become evident in a later section
in which their application is illustrated.

Definition 4

A pair of trees of 2-semi-isomorphic graphs G; and
G, that contain the same edges are called a tree pair,

ordinary edges

AND W. H. KIM

and the product of weights of the edges constituting a
tree pair is a common tree product of G; and G..

Definintions 1-4 are illustrated in the following
example.

Example 3. Consider the 2-semi-isomorphic graphs
G and G, as shown in Fig. 8.

The edge-pairs »; and w, are the ordinary edge pairs,
but w;, ws, ws, we, and wy are the active edge pairs. If
we choose a tree pair of G; and G as shown in Fig. 9,
where node 2 is picked as the reference node, then, the
principal and minor nodes of each edge in the trees are
given in Table II. :

Let us now introduce the orientation of edgesin 2-
semi-isomorphic graphs G, and G of (#+1) nodes and e
edges. The incidence matrix of a tree T of an oriented
and connected graph, Ar=[a;;], has (+1) as an
element of (7,7) position if edge j is incident at node
1 in T and the orientation of the edge is directed away
from node 7. If the orientation of edge j is directed
toward node 7, then a;;= —1. The trees of a tree pair
of Gy and G are denoted by T, and T, respectively.
Then, the sign of the common tree product of tree pair
Ty and Ty, ¢, is given by

€= [AT]'AT2‘[,

where A*is the transpose of 4.

If A=A r,, which is true for a graph corresponding
to ordinary network, the sign of the common tree
product e is always positive.” However, when A 717 4 72,
the sign of the common tree product should be
determined.

Lemma 3. The sign of the common tree product of a
tree pair of 2-semi-isomorphic graphs is determined
only by the active edge pairs in the tree pair.

Proof. Consider a tree pair Ty and T, of (n+41)
nodes, containing %k active edge pairs and (n—£&)
ordinary edge pairs. Then, arrange the columns of the
incidence matrices of Ty and Ts, A1 and A7, such
that the first (n— k) columns correspond to the ordinary
edge pairs and the last 2 columns to the active edge
pairs. Thus, we get

active edges

|
a11° 01,0k [ @1,npt1°" " Q1
Ar= ' | =[P11P12]
Apn* * *Qp,n—k | Cn,n—k+1°* *Qnn
€)
4 [ bivc b1k [[ b1 k1 - - blu] [Q 0 ]
T2= =Lnie
nn' " 'bn,n—k [ bn,n—k+l' M bnn
where
Q11 * Q1 n—k A1, n—kt1" " Q1n
P11= P12= ]
An1°* “Qn,n—k Qn,n—k+1' " *Ann
(4)
bll' . bl,n—k bl,n—k+1' v bln
Q11= ] Q12= ],
bnl' * 'bn,n—k bﬂ,n—lc-}-l' * 'bnn
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TasiE II. Principal and minor nodes for edges in trees of Fig. 9.

Tree of G, Tree of G
Edges W W2 Wy We W Wy Wy Ws
Principalnodes 1 5 3 4 1 4 3 3
Minor nodes 2 1 2 5 2 1 2 1

and since Py and Q1 represent the incidence relation-
ship of ordinary edge pairs, due to definition 3 P1;=0Q\,
ie., ay=>byfori=1, .- -mwand j=1, -+ -n—k.

Now, assume that the edge 1 corresponding to the
first column of 4 7; and A4 72 1s incident at nodes r and
s, Le., @1, @51, by1, and b, are nonzero and @,1=b,
= —g@n=—by, and expand the determinants of Ar
and A4 r, about the first column. If node 7 is the prin-
cipal node of edge 1 of 7', node s is the principal node
of edge 1 of Ts, and s>£r+1; then, interchange the sth
and (r+1)th rows in the matrices 47, and A 7, before
expanding the determinants of A 7y and A 7o If s=7+1,
then no interchanges of rows are necessary. Thus we
get, using lemmas 1 and 2,

lA T1l = (—1)’+l+ull',1lMTll rl

(5
]A TZI = (_ 1)r+1+1+ub’1lMT2‘ 8ly

where « is the number of interchanges of rows (equal
to 1 or 0), |Mr|,, is the minor of the determinant of
A7 of (p,g) position, and [Mr],, is the matrix corre-
sponding to the minor. Since edge 1 is an ordinary
edge, @,,=—Db4 for r#£s, and (5) is rewritten as

IA Tl] = (-“1)r+1+"d,1‘MT1] r1

(6)
[A1s| = (=1)rHteg, [ M1y 1.

Therefore, the sign prefixing minors |Mr|,x and
| M 73] 1 are the same.

When edge 1 has node 7 as its principal node both in
T, and T, i.e., a,1="b,1, then the determinants of the
incidence matrices are expanded about the element
@, and we get

[Ar|=(=1)+a, | Mr| .,
|Are| = (= 1)y | M 7s| n= (= 1) an | M1e] 1. (7)

Thus, the minors in (7) have the same sign prefixing
them.

Next, expand the determinants of [M7z 1 and
[(Mry]u (or [M19],) about the first column of the
submatrices. If edge 2 of the tree pair, which corre-
sponds to the first column of the submatrices, corre-
sponds to the minors and has the same node as its
principal node both in T; and T, the process described
by Eq. (7) is repeated. If the principal node of edge 2
in T, is different from that of edge 2 in T, then the
process described by Eq. (6) is repeated. Therefore,
one continues to expand the determinants of the
incidence matrices of T, and T, by the Laplace ex-
pansion as described by the Eqgs. (6) and (7) until the
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(a) (b)
F1G. 9. A tree pair of (a) G, and (b) G of Fig. 3.

remaining minors of the determinants contain only
columns corresponding to active edge pairs in the tree
pairs. It is clear that the sign of the remainders are
the same.

Furthermore, suppose we relabel row s as row (r,s)
when a,; is used as a complementary minor in expanding
about a column, where s is the minor vertex of the edge
corresponding to the column. Then, the final resulting
submatrix will be the incidence matrix of the reduced
graph of the tree in the tree pair 1. The sign of the tree
product then depends only on this final reduced tree.
Hence lemma 3.

Definition 5

The reduced tree pair of a tree pair of 2-semi-
isomorphic graphs are a pair of the subgraphs derived
from the tree pair by removing all ordinary edge pairs
and identifying their terminal nodes in the pair.

Example 4. Given a tree pair T’y and T as shown in
Fig. 10, where node 0 is the reference node. The inci-
dence matrices of 7y and T, A, and A 7, are found as

1 2 3 4 5
141 +41 0 0 ©
200 0o o o 1
An=3/0 0 —~1 0 -1
44-1 0 0 0 0O
50 -1 0 -1 0
)
1 2 3 4 5
1(+1 41 0 0 0
200 0 0o o0 -1
Ar=3/0 0 —~1 0 0|,
4l—-1 0 0 -1 1
5o -1 0 0o o

where the first three columns of A r; and A4 5 correspond
to the ordinary edge pairs 1, 2, and 3.

(a) (b)
Fi16. 10. A tree pair, (a) T} and (b) Te.
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First, interchange rows 2 and 4 in the matrices, then expand the determinants. Thus, we get

w1 We w3
141 +1 0
4-1 0 O
|[Adn|=(-1)3] 0 0 -1
200 0 O
50 -1 O
wy W2 w3
1j+1 +1 0
4/—-1 0 O
[Ar]=(—1)3] 0 0 -1
200 -1 0
50 -1 0
Interchanging rows 5 and 3 we get
We
(1,4)|+1
|Ar|=(—1)2 5 |—1
210
310
Ws
1,4)] 0
[Are|=(-1)2 5 |—1
2470
310

Wy Ws we w3 W4 wWs
0 0
0 0 a4)+1 0o 0o 0
0 —1=(-1)3 |0 —-1 0 -1
0 1 2 0 0 0 +1p
-1 0 5 |—-1 0 -1 0
9)
Wy Ws Wa w3 Wy Wy
0 0
-1 1 a0 0 —1 +1
0 0|=(—1) 3/0 -1 0 0
0 0 210 0 0 -1y
0 0 —-5|]—1 0 0 0
w3 Wy Ws w3 wWg Ws
0 0 0] (450 -1 o0
0 —1 0= 3 |0 0 1],
0 0 +1 2 |—-1 0 -1
-1 0 -1
(10)
W3 Wy Wy w3 Wy Wp
0 —1 41} (145]0 -1 +1
0 0 0 3 0 0 -1y
0 0 -1 2 -1 0 0
-1 0 0

If we expand about the element a3; in each determinant,

we have

(174,5)
Az ]=(=1)

(1,4,5)
|Are|=(—1)

Wy Ws
-1 0
0 +1/
Wy Ws
-1 41
0o -—1|
(,45) w,
Wy
o

F16. 11. Reduced trees.

(1

3

F16. 12, Triode.

It is noted that the matrices corresponding to the
resulting minors are the incidence matrices of the re-
duced trees shown in Fig. 11.

Definition 6

The sign of an active edge pair is defined as +1 if
both edges in the pair are directed away or toward their
principal nodes: —1, otherwise.

We therefore have

Theorem 1. The sign of the common tree product of
a tree pair, is given by

e=(—1)7 ] [sign of active edge pairs of the

reduced tree pair of a tree pair], (12)

where v is the number of interchanges of edges needed
to give all active edge pairs in the reduced tree pair the
same principal nodes, and % is the number of active
edge pairs in the reduced tree pair.

Proof. By lemma 3, we need only consider the

F16. 13. Mathematical equiv-
alent circuit of triode G.
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reduced graphs of the trees in the tree pair to determine
the sign of the common tree product. Let 4 and t
denote the reduced trees and Ar/=[e;/] and
Ary’=[b;]] their respective incidence matrices. Now,
interchange columns in Ar," until all edges in #’ and
¢t have the same principal vertices, the resulting
matrix being A7"". By lemma 1, this can always be
done.

Suppose that, in column 1 of Ar,"" and A7y, the
respective principal nonzero entries corresponding to
principal vertices are a;,” and 4,,". Then,

[ Ar|=(—1)"ay,’ | M| 1.(=1),

13
Ard|= (Db | M,

where |M1'|;; is the minor of the determinant of Az
of (7,7) position and 4 is the number of interchanges of
columns in A7/ to give all edge pairs in ¢ and 4’ the
same principal vertices.

If the sign of edge pair 1 is positive, then b1,/=a1,’
and

e=|Arn'||Ar)|
=[(—=1)"9a, /B M| [M71)| (1)

=|Mr'| Mz (=1)". (14)

1f the sign of edge pair 1 is negative, then b;,'= —ay,
and

e=|Ar||Ary|
=[(=1)"9a,/ PIM 2| | Mz | (—1)7H
=|Mz/||Mz/| (=) (15)

We next expand the minors |M 7| and |M 7|
about edge 2 which is the first edge in the minors. The
process described by Eqs. (14) and (15) is thus repeated
until we have expanded about all columns of 4 7," and
Ary. The final result is e=(—1)7(—1)#, where 8 is
the number of active edge pairs with a negative sign.
Hence theorem 1.

P P
G G
°
I 9, 9,
G
K K

(@) (b)

F16. 14. Current and voltage graphs. (a) Current graph G;.
(b) Voltage graph Gy.

II—P-—) /\l <——<2——I3
2£—-——— ———124

Fic. 15. A gyrator.
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! 3
°<I @ Kz x‘ “2
2 q
F16. 16. Mathematical equivalent circuit of gyrator.
] 3 | 3
«, ( o, o, o,
2 4 2 4

(a) (b)
F16. 17. (a) Current and (b) voltage graphs.

2. APPLICATIONS OF 2-SEMI-ISOMORPHIC GRAPHS

There are a number of engineering problems in which
one may find applications of the properties of 2-semi-
isomorphic graphs. In this section we shall discuss the
analysis of active and mutually coupled and non-
reciprocal linear networks. Let G be a graph representing
a linear network, and Gr and Gy denote the subgraphs
of G, the so-called “current and voltage graphs,”
respectively.

These concepts are illustrated in examples 5 and 6.

Example 5. A triode of Fig. 12 is characterized as a
linear active device by

(16)

where g, is the transconductance and g, is the plate
conductance. The “mathematical equivalent circuit
G” of the triode characterized by (16) is given in Fig.
13. Note that since g, relates the voltage and current
between the same pair of nodes in (16), it is repre-
sented by a single edge between those nodes in Fig. 13.
On the other hand, g. relates the voltage and current
between two different pairs of nodes in (16) and,
hence, appears as an edge between both pairs of nodes
in Fig. 13. The current and voltage graphs of the graph
in Fig. 13 are shown in Figs. 14(a) and 14(b), respec-
tively. Note that the passive edge g, appears between
the same nodes in Gr and Gy, whereas the active edge
gm does not.

Example 6. A two-channel gyrator, shown in Fig.
15, may be characterized as a linear nonreciprocal
device by the following set of equations:

Il=Ol1V2

I,= '"‘azvz,

I,=gunVax+gsV ok,

(an

where a1=a;=c is the gyrator admittance. The
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]
3
gIII
g %
5
o«
Y\ a Y3
3
0
2 <

(@) (b)

Fi1c. 18. An active and mutually coupled network and its
mathematical equivalent circuit. (a) An active network. (b)
Mathematical equivalent circuit of ¢ where oy =as=a.

“mathematical equivalent circuit” G of the gyrator is
shown in Fig. 16. The current and voltage graphs are
shown in Figs. 17(a) and 17(b), respectively.

With these concepts available, the node determinant
of the admittance matrix of the network is found to be

A=|A:Y . Av*| =3 ; ezx(common tree product of a
tree pair v; of Gr and Gy),

(18)

where 47 and Ay are the incidence matrices of G and
Gy, respectively, and A is the transpose of 4. ¢; is the
sign of the common tree product of tree pair v; deter-
mined by theorem 1. The summation is for all possible
tree pairs of Gr and Gy. It is understood that a tree

(b) (b’

AND W. H. KIM

(a) (b)

Fic. 19. Current and voltage graphs. (a) Current graph G,.
(b) Voltage graph Gv.

product is the product of admittances of a set of edges
constituting a tree.

When a network contains only the ordinary elements,
the current and voltage graphs of the network are
identical, i.e., A;=Ay, and the sign of a tree product
is always positive. However, if a network includes
dependent node pairs, its current and voltage graphs
are not identical but they are 2-semi-isomorphic. Hence,
the common tree product of Gr and Gy may not always
be positive.

Example 7. Given a network containing a tube and a
gyrator as shown in Fig. 18(a), where the transcon-
ductance and the plate conductance of the tube are
gm and g,, respectively. 8 denotes the gyrator con-
ductance. The mathematical equivalent circuit of the
network in terms of “current and voltage elements” is
then found as shown in Fig. 18(b). Then, the current

(@ )
D

F16. 20. Tree pairs of G; and Gy of Fig. 19. A. Tree pair 1: (a) Tree 1 of G. (a’) Tree 1 of Gy. B. Tree pair 2: (b) Tree 2 of G|.
(b’) Tree 2 of Gv. C. Tree pair 3: (c) Tree 3 of G1. (c’) Tree 3 of Gv. D. Tree pair 4: (d) Tree 4 of G1. (d’) Tree 4 of Gy.
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0,2) 1,2)

oK, x,
9m 9m
4 4
(3,5) (3,5)
X2 &,
(o} o]
(a) A @)
(1,2) 1,2)
o, o<,
(3,4) (3,4)
&, «,
(0,5) {0,5)
(b} b")
B
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(1,2) (1,2)

L] oc,
(3,4,5) (3,4,5)
o, x,
0 o]
(©) c (c?
1,2) (L,2)
X, *,
(0,3,5) (0,3,5)
o<, o,
4 4
@ @)
D

F1c. 21. Reduced tree pairs of Fig. 20. A. Reduced tree pair 1: (a) Of tree 1 of G1. (a’) Of tree 1 of Gv. B. Reduced tree pair 2
(b) Of tree 2 of G;. (b") Of tree 2 of Gy. C. Reduced tree pair 3: (c) Of tree 3 of G1. (¢} Of tree 3 of Gv. D. Reduced tree pair 4:

(d) Of tree 4 of G1. (d") Of tree 4 of Gy.

graph Gy of the equivalent circuit, which contains the
current elements and the ordinary elements, is given
in Fig. 19(a); and its voltage graph Gy with the voltage
elements and the ordinary elements is shown in Fig.
19(b). The orientations of the ordinary edges ¥1, ¥z, ¥s,
and g, are assigned arbitrarily. It is noted that the
current and voltage graphs in Fig. 19 are 2-semi-
isomorphic. We, therefore, use the properties of 2-semi-
isomorphic graphs described in the previous section in
order to evaluate the node determinant of the network
of Fig. 18(b).

By inspection of Fig. 19, it is clear that there exist
four tree pairs of the two graphs as shown in Fig. 20.

In order to find the sign of each common tree product
of the tree pairs by the formula of theorem 1, the
ordinary edge pairs in the tree pairs are reduced, and
the reduced tree pairs are shown in Fig. 21.

For the reduced tree pair 1, the number of active
edge pairs is three. However, edge pair g. becomes an
ordinary edge pair in the reduced tree. Therefore, the

(1,2) (,2)

, %,
F16. 22. Reduced
tree pairs of Fig. (3,4,5) (3,4,5)
21A.
°<z D(,
o [¢)

reduced tree pair 1 of Fig. 21 is gain reduced as shown
in Fig. 22.
In Fig. 22, due to definition 6, the signs of edge pairs
a; and a3 are
sign of edge pair a;=—1,

. . (19)
sign of edge pair ao=1.

The number of interchanges of the nodes needed to
give edge pairs ; and o, the same principal nodes is one.
Therefore, from theorem 1, we have

the sign of the common tree product of tree pair 1
= (—1)-(sign of edge pair ;) (sign of edge pair )

=(=DA)(-1)=+1 (20)
Similarly, one gets:
The sign of the common tree product of
tree pair 2=-1;
The sign of the common tree product of
tree pair 3=+1; (21)

The sign of the common tree product of
tree pair 4=+1.

Thus, the node determinant of the network A is found
by

A= y1Y9,1008m+ y1Yag pt102H V1yagpercast y1yeysonas. (22)
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The constitutive equation derived in a previous paper relating electric current and field in an isotropic
material which is subjected to a time-independent deformation is applied to the solution of the problem
of electrical conduction in a twisted tube of circular cross section to which a longitudinal electric field is
applied. It is shown that the current follows a helical path and that an axial magnetic field is produced.

1. INTRODUCTION

N a previous paper,! the constitutive equation for

electrical conductionin a deformed isotropic material
has been derived. In the deformation of a body, a
particle initially at X; in the rectangular Cartesian
coordinate system x moves to x; in the same coordinate
system. It is assumed that the components J; of the
current density vector J are polynomials in the defor-
mation gradients dx,/dX, and the components E, of
the electric field E. It is shown in the previous paper
that the constitutive equation for the current must be

expressible, with the notation
gii= (0x;/3X,) (8x;/0X,), g=llgill, (1.1)
in the form
Ji=(A48:;+Bgii+Cgugri) E;, (1.2)

where 4, B, and C are expressible as polynomials in the
quantities
Trg, Trg

Tr ¢, (1.3)

and
EE;,

The assumption of polynomial dependence was
introduced in order to simplify the derivation of Eq.
(1.2). If A, B, and C are general single-valued functions
of the quantities (1.3) and (1.4), the invariance require-
ments which led to the form (1.2) are still satisfied. The
argument g—# can then be eliminated from consideration
since g can be expressed in terms of the quantities (1.3)
[see Eq. (3.1)].

We now assume that the electrical conduction is
ohmic, as it will generally be if the electric field is
sufficiently small. The coefficients 4, B, and C are then
independent of E, and they are, therefore, functions of
the quantities (1.3) alone.

We shall use the constitutive equation (1.2) to solve
the problem of the electrical conduction in a stretched
and twisted tube of conducting material when a poten-
tial difference is applied to its ends. It will be shown that
the current in the tube flows in helices and gives rise to
an axial magnetic field. The conductivity of the
deformed tube and the magnitude of this magnetic
field are calculated.

EigiE;, EigigiEr, gi=|gs|™% (1.4)

1 A. C. Pipkin and R. S. Rivlin, J. Math. Phys. 1, 127 (1960).

2. GENERAL CASE

Let us suppose that initially the tube has inner
radius Ry and outer radius R,. Let the tube be twisted
through an angle ¢ radians per unit length and then
stretched to A times its original length. If the X axis is
taken along the axis of the tube, the deformation may
be described by the equations

x,=7(R) cos(0+y¢Xs), (2.1)
xe=7r(R) sin(0+y¢X5), (2.2)

and
x3=AX3, (2.3)

where

RE= X2+ Xz (2.4)

and
f=arctan(X,/X}). (2.5)

The precise form of the function #(R) depends on the
rheological properties of the material and on the system
of forces applied to the tube. Since 7(R) has not been
specified, the deformation may also include inflation
under internal pressure.

From (1.1) we obtain, at the particle which is at
(r, 0, x3) in the deformed state,

(r')? 0 0
0

(r/R:(1+Ry* ngN{. (2.6)
2 A

=

||gi1'

These are the components of g in a local Cartesian
coordinate system with axes in the radial, circum-
ferential, and axial directions, not only at (r, 0, x3) but
also at any other point. Let the components of E and J
in such a system be E,, Eq E., and J,, Js, J.. Then
introducing (2.6) into (1.2), we obtain

Jr=[A+B(r)+C(r')]E,, (2.7)
Jo=AEp+ f B(14p2)4Cf2(14-p2)2+Cp2N* ]E,4
+ foA[B+Cf2(1+p)+CN]E,, (2.8)
J.=AE .+ foA[ B+ C (1424 CN]E,
+N[B+C(f+N) ]E,, (2.9)
where we have used the notation
f=r(R)/R, p=yR. (2.10)

A, B, and C are functions of the quantities (1.3), which
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take the following values:

Tr g= (/) + P14+, (2.11)
Tr = (/) + (140027000, (212)
Tr §= () (1P 314N

43202008 (2.13)

In the particular case when E,=FE;=0 and E.=E,
with E a constant, we have

J,=0, (2.14)
Jo/E=fo\[B+CL1+p)+CON],  (2.15)
T./E= A+N[B+C(f24M)]. (2.16)

No current flows through the sides of the tube since J,
is zero, and the steady-state condition Vv-J=0 is
satisfied identically.

The total current J passing through the ends of the
tube is found from Eq. (2.16):

J=2r f T.(rdr. (2.17)
0

Here ro=7(Ro) and r,=7(R)), i.e., 7o and r; are the inner
and outer radii of the tube in its deformed state. The
average axial conductivity is

J 2 Ry
= [A+NB

7(712-702)E 712—7‘02 Ro

A 224 N)CTfr'RdR,

(2.18)

where the integration variable has been changed to R.

Besides the current in the axial direction, there is
the circumferential component Jg. The current flows in
helices, unless B=C=0. The component Js produces
an axial magnetic field H inside the tube which,
neglecting end effects, is given by

H= (él'zr/c)fr1 Jo(r)dr

Ry

=E(4x/c) |  JoA[B+C(f*+ o +N) IR,

Ro

(2.19)

where ¢ is the velocity of light in free space.

3. INCOMPRESSIBLE MATERIALS

The preceding results can be brought into a more
explicit form if the material is incompressible. In this
case |9x,/9X;| =1, and it follows from Eq. (1.1) that
|gi;| =1 as well. The latter determinant can be expressed
in terms of the quantities (1.3):

g=|gii| =%[2 Tr -3 Tr g Tr g2+ (Tr 8)*]. (3.1)

Thus, with g=1, Tr ¢ can be expressed in terms of

Tr g and Tr g2 hence A4, B, and C are functions of
Tr g and Tr g2 alone.

With regard to the deformation described by Egs.
(2.1)-(2.5), the condition |dx;/8X;| =1 implies that

M (R)(R)=R, (3.2)
and therefore,

f2—_—f()2+>\—1 (Rz—Ro2). (33)

Only 7, is left to be determined by the properties of the
material and the forces applied. In any particular
experiment, 7, can be measured, and (R) is thus deter-
mined without reference to any knowledge of the
rheological properties of the material.

By making use of Eq. (3.3), we obtain

F=(r/R*=X"R[R~ Ri+)ri’]
=N pP— (YR +AYro)*] (3.4)
and
(r)2=X"RY R2— R+ M2 ]!
=N [P~ WR)*+AFro)* T (3.5)

By using Eqs. (3.2) and (3.3), the average axial con-
ductivity (2.18) can be written as

J 1 Wr)?
- f [A+\B
n(ri—r?)E  (YR1)*— (YRo)? V yro)?

+N(f2+a)C1d (). (3.6)

When Eqgs. (3.4) and (3.3) are used in Egs. (2.11) and
(2.12), it is seen that Tr g and Tr g? are functions of p?
depending on the parameters (Y.Rq)?, (¥ro)?%, and A.
The same is then true of 4, B, and C. The average axial
conductivity is, therefore, a function of (YR)? (YR1)?
(¥r0)?, and A.

Similarly, wH/E is a function of ({Ry)?, (WR1)?, (¥70)%,
and A:

WH/E=(2n/c) ("R)‘) [B4C(P+ 24N (). (3.7)
(yRo)?

H is an odd function of ¥ ; hence, a small twist may be
expected to produce a proportional magnetic field.

4. SMALL DEFORMATIONS

It has been shown! that when the deformation is of
the form x;=X,+u:;(X,), where the displacement
gradients du;/dX; are of infinitesimal order, the con-
stitutive equation can be written in the form

Ji=[(S1+Sserr)dij+Saei;1E;,

provided that the conduction is ohmic. Sy, Ss, and Sy
are constants, and e;; is defined by

eij=3[ (9u:/ X ;)+ (0u;/3X)]. (4.2)

If in Eqgs. (2.1)-(2.3) we set A=1+¢€ and r(R)=R
+u(R), and treat ¢, #(R)/R, and ¢R as infinitesimals,

(4.1)
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then at the point (r, 0, x3), we obtain

' (R) 0 0
lell=| 0 «(R)/R HR|. (4.3)
0 YR €

On taking E,=Ey=0 and E,=F, and making use of
Eq. (4.3), we obtain

J.=0, (4.4)
Jo/ E=3YRS,, (4.5)

and
]z/E=Sl+S2ekk+S4€- (4-6)

From Eq. (4.5) the axial magnetic field can be found
immediately :

Ry

H=(4r/c) WRSWEIR= (E/c)r (R~ RPYSs. (4.7)

Ry

PIPKIN AND R. S.

RIVLIN

In the case of an elastic material with no forces
applied to the sides of the tube, #(R) is equal to —oeR,
where o is Poisson’s ratio. In this case, the average
axial conductivity is the constant conductivity

Jo/ E=8514+S2(1—20)et-Sse. (4.8)

In an incompressible material, whether elastic or not,
e, vanishes, hence

J./E=S81+Sse. 4.9
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